Analysis of ChIP-seq data (answers to questions)

Stéphanie Le Gras (slegras@igbmc.fr)

Exercise 1: mapping statistics

• 2.

- Click on the button + to create a new history
- Click on the history name "Unnamed history", erase "Unnamed history", enter "ChIP-seq data analysis" and press enter

• 3.

- Click on "View all histories"
- Drag the two files 22:mitf.bam and 23:ctrl.bam from the imported history « NGS data analysis training Strasbourg » and drop them to your current history "ChIP-seq data analysis".

Exercise 1: mapping statistics

• 4

- Search for "flagstat" in the search field (tool panel)
- Click on the name of the tool
- Click on 🕐 to select multiple datasets
- Select all 2 datasets
- Click on ✓ Execute

BAM File to report statistics of

Sample name	No. of raw reads	No. of aligned reads
MITF	31,334,257	23,015,734
Ctrl	29,433,042	19,857,374

Exercise 2: duplicate reads estimate

• 1.

- Search for "markdup" in the search field (tool panel)
- Click on the name of the tool
- Click on @ to select multiple datasets
- Select the 2 bam files
- Select validation stringency: Silent
- Click on 🗸 Execute
- Open the datasets [MarkDuplicates on data * : MarkDuplicate metrics]

Sample name	No. of raw reads	No. of aligned reads	No. of duplicate reads
MITF	31,334,257	23,015,734	16,806,838
Ctrl	29,433,042	19,857,374	15,070,921

Exercise 3: Visualization of the data

• 1.

- Idh1 -> No peak
- NPAS2 -> peak
- AP1S2 -> Peak,
- PABPC1I -> No peak
- Park7 -> No peak
- Pmel -> Peak
- Cdk2 -> Peak
- Actb -> No peak

Exercise 4: peak calling

• 1.

- Search for "macs2 callpeak" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - Are you pooling Treatment Files? No
 - ChIP-Seq Treatment File: [mitf bam file marked by MarkDuplicates] (1)
 - Do you have a Control File? Yes
 - Are you pooling Control files? No
 - ChIP-Seq Control File: [control bam file marked by MarkDuplicates] (2)
 - Effective genome size: H.Sapiens (2.7e9)
 - **Outputs**: select Peaks as tabular file, summits, Summary page (html), Plot in PDF
 - Click on ✓ Execute

Exercise 4: peak calling

- 2.
 - There is 12,159 peaks

• 3. Look at the tabular file

# Redun	dant rate in contro	ol: 0.76			
# d = 76	i				
# alterna	ative fragment len	gth(s) may be 76 bps			
chr	start	end	length	abs_summit	pileup
chr1	980687	980817	131	980745	8.48

• The d value estimated by MACS seems a bit small. Let's try to re-run MACS with the expected fragment size : 200

Exercise 5: peak calling

- 1.
 - Click on the name of one of the datasets generated by Macs2.
 - Click on C to display Macs2 form with the same parameters as for the previous run of Macs2
 - In Build Model:
 - select Do not build the shifting model (--nomodel)
 - Set extension size: 200

 - Click on ✓ Execute
- 2.
 - 7,890 peaks are now found

 NOTE: the graphs (showing the estimate of d value) are no longer generated

- 1.
- Search for "Intersect" in the search field (tool panel)
- Click on the name of the tool bedtools Intersect intervals
- Set parameters:
 - File A to intersect with B: [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of MACS)
 - Combined or separate output files
 - One output per file 'input B' file
 - File B to intersect with A: [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)
 - Calculation based on strandedness? Overlaps on either strand
 - What should be written to the output file? Write the original entry in A for each overlap (-wa)
 - Report only those alignments that **do not** overlap the BED file: Yes
 - Click on 🗸 Execute

4,177 regions are found

18: bedtools Intersect i • / × ntervals on data 15 and data 10 4,177 regions format: bed, génome de référence: hg38

2.

- In Galaxy, click on D for the two datasets named [MACS2 callpeak on data * and data * (narrow Peaks)] and save the files on your computer
- 2. Go to IGV and load the two files along with the two tdf files already loaded (mitf.tdf and ctrl.tdf)
- 3. In Galaxy, click on the
 of the dataset named [bedtools intersect intervals on data * and data *]

Chrom	Start	End	Name	Score	Strand	ThickStart	ThickEnd	ItemRGB	BlockCount
chr1	983819	983925	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_2	53		6.75700	9.07098	5.31956	50
chr1	1586289	1586365	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_10	14		4.10564	4.39929	1.45337	7
chr1	1728644	1728730	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_11	15		4.27812	4.90906	1.52693	66
chr1	1807103	1807179	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_12	44		5.62660	8.09168	4.44141	33
chr1	2167152	2167228	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_19	38		5.44460	7.46705	3.86461	48
chr1	3276552	3276628	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_21	15		4.27812	4.90906	1.52693	52
chr1	3444380	3444456	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_22	13		3.43160	4.33100	1.39739	40
chr1	3681035	3681111	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_23	13		4.05353	4.26549	1.34476	59
chr1	3900155	3900272	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_24	26		4.85117	6.12167	2.65739	64

SSU72 (chr1:1556527-1578211)

Exercise 6: compare the two MACS runs

chr1:41882599-41882681

chr1:1586290-1586365

• We are going to keep the second run of MACS

For the following dataset of the second run of MACS2, rename the datasets:

- [MACS2 callpeak on data * and data * (summits in BED)] -> MITF_peak_summits.bed
- [MACS2 callpeak on data * and data * (narrow Peaks)] -> MITF_peaks.narrowPeak

Exercise 7: peak annotation

Search for "closest" in the search field (tool panel)

- BED/bedGraph/GFF/VCF/EncodePeak file: MITF_peaks.narrowPeak (second run of MACS2)
- Overlap with: will you select a BED/bedGraph/GFF/VCF/EncodePeak file from your history or use a built-in GFF file?
 - Use a BED/bedGraph/GFF/VCF/EncodePeak file from the history
 - Select a BED/bedGraph/GFF/VCF/EncodePeak file: 25:hg38_ens105_ucsc.bed
- How ties for closest feature should be handled: first Report the first tie that occurred in the B file
- In addition to the closest feature in B, report its distance to A as an extra column: Yes
- Add additional columns to report distance to upstream feature. Distance definition:
 - Report distance with respect to A. When A is on the strand, « upstream » means B has a higher (start, stop). (-a)
 - Choose first from features in B that are upstream of feature in A: Yes
- Click on 🗸 Execute
- Rename the file [Closest regions from data * and data *] -> mitf_peaks.annot.tsv.

Exercise 8: de novo motif discovery

• 1.a

- Search for "Sort" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - Sort Dataset: MITF_peak_summits.bed (second run of MACS2)
 - on column: Column: 5
 - with flavor: Numerical sort
 - everything in: Descending order
- Click on <> Execute
- 1.b
 - Search for "select first" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Select first: 800
 - From: [Sort on data *] (dataset generated in 1.a)
 - Click on ✓ Execute

Exercise 8: de novo motif discovery

2.

- Search for "slop" in the search field (tool panel)
- Click on the name of the tool bedtools SlopBed
- Set the parameters
 - BED/bedGraph/GFF/VCF/EncodePeak file: [Select first on data *] (results of step 1.b.)
 - Genome file:
 - Locally installed Genome file
 - Genome file: Human Dec. 2013 (GRCh38/hg38) (hg38)
 - Choose what you want to do: Increase the BED/VCF/GFF entry by the same number of base pairs in each direction. (default)
 - Number of base pairs: 50
 - Click on 🗸 Execute

Exercise 8: de novo motif discovery

• 3.

- Search for "getfastabed" in the search field (tool panel)
- Click on the name of the tool bedtools GetFastaBed
- Set the parameters:
 - **BED/bedGraph/GFF/VCF/EncodePeak file**: [bedtools SlopBed on data *] (the dataset generated in 2)
 - Choose the source for the FASTA file: Server indexed files
 - Fasta_id: Human (homo sapiens): hg38
 - Click on 🗸 Execute
- Rename the file peakSummits_+/-50nt_top800.fasta
- 4.
 - Expand the box of the dataset peakSummits_+/-50nt_top800.fasta and click on box to download the file
- 5.
 - Go to MEME-chIP website and run the tool with the fasta file peakSummits_+/-50nt_top800.fasta as input file and with default parameters.

- 1.
 - Select clusters 1, 2, 3, 4, 5, 9 (1)
 - Click on Export Selected clusters (2) and save the file as sub-clustering-gene.bed

sort.bam H3K4me3.sort polll.sort.bam	KMeans seed
	Contrast 20 Cluster 1: 680 elements Cluster 2: 6156 elements Cluster 3: 1 elements Cluster 4: 2075 elements Cluster 5: 711 elements Cluster 5: 711 elements Cluster 7: 7970 elements Cluster 7: 7970 elements Cluster 9: 3051 elements Cluster 10: 11085 elements
	Pedics(SED) Merged dataset profile Mean profile chr17 48133442 48430275 ENSC000014 chr17 58755854 58985179 ENSC0000017 chr17 58755854 58985179 ENSC0000014 chr17 58276760 54365634 ENSC0000014 chr17 59212197 59912366 ENSC0000024 chr17 60177327 60422470 ENSC0000017 chr17 6535537 66192133 ENSC0000014 chr17 59912197 59912366 ENSC0000016 chr17 5991713 82644662 ENSC0000015 chr17 82519713 82644662 ENSC0000016 chr17 29625938 29930276 ENSC0000016 chr17 30344503 30344604 ENSC0000023 chr17 7576811 7576952 ENSC0000023

- 1.
 - Import the file sub-clustering-gene.bed. (You can use the one provided in chipseq/seqminer).
 - Click on Browse (1), go to the directory which contains the file and click on open.
 - Remove previous distribution (2)
 - Click on Extract data (3)
 - Click on Clustering (4)

- Go to Annotation (1)
- Click on cluster 4 (2)
- Click on Export selected cluster (3)

- Go to DAVID website https://david.ncifcrf.gov/
- Click on Start Analysis (1)

- Fill in the form:
 - Paste a list (1): Copy and paste Ensembl Gene IDs from the Cluster4.xls file
 - Select Identifier (2) (drop down list): ENSEMBL_GENE_ID
 - List Type (3): Gene List
 - Click on Submit List (4)

 Click on Continue to Submit IDs That DAVID Could Map (1)

	Gene ID Conversion Tool DAVID Bioinformatics Resources (2021 Update), NIAID/NIH	
Home Start Analysis Shortcut t	o DAVID Tools Technical Center Downloads & APIs Term of Service About DAVID About LHRI	
*** Upload List Background	f you are looking for <u>DAVID 6.8</u> , please visit our <u>production site</u> . ***	
Upload Gene List	Gene ID Conversion Tool	
<u>Demolist 1</u> <u>Demolist 2</u> <u>Upload Help</u>	Help and Tool Manual	
Step 1: Enter Gene List A: Paste a list	You are either not sure which identifier type your list contains, or less than 80% of your list has mapped to your chosen identifier type. Please use the Gene Conversion Tool to determine the identifier type.	
Or B:Choose From a File Choisir un fichier Aucun fichier c	Option 1 (Recommended): Continue to Submit the IDs That DAVID Could Map Option 2: Convert the gene list to ENTREZ_GENE_ID (Default) holdsi	1.
Multi-List File ? Step 2: Select Identifier	For species: Type your species name or id (e.g. Homo sapiens; 9506)	
	Option 3: Go Back to Submission Form	
Step 3: List Type Gene List ● Background ●		
Step 4: Submit List Submit List		

- Select to limit annotations by one or more species (left panel)
 - Select Homo sapiens (466) (1)
 - Click on Select Species (2)
- Click on Functional Annotation Tool (3)

- Keep all default
- Click on Functional Annotation Clustering (1)

DATABASE

DAVID Bioinformatics Resources ((2021 U	pdate)
Laboratory of Human Retrovirology and Immun	oinformatic	s (LHRI)

*** Welcome to DAVID (2021 Update) *** *** If you are looking for <u>DAVID 6.8</u>, please visit our <u>production site</u>. ***

Functional Annotation Clustering

Help and Manual

Current Gene List: List_1 Current Background: Homo sapiens 466 DAVID IDs

Options
 Classification Stringency
 Medium

Rerun using options Create Sublist

50 CI	uster(s)					Downi	oad File
Annota	tion Cluster 1	Enrichment Score: 6.01	G	- 	Count	P_Value	Benjamini
	GOTERM_MF_DIRECT	RNA binding	RT		55	1.1E-7	3.2E-5
	UP_KW_PTM	Isopeptide bond	<u>RT</u>		60	6.5E-7	5.4E-6
	UP_SEQ_FEATURE	CROSSLNK:Glycyl lysine isopeptide (Lys- Gly) (interchain with G-Cter in SUMO2)	<u>RT</u>	=	46	8.0E-7	1.1E-3
	UP_KW_PTM	Ubl conjugation	<u>RT</u>		72	1.5E-5	9.6E-5
Annota	ition Cluster 2	Enrichment Score: 5.56		-	Count	P_Value	Benjamini
	GOTERM_CC_DIRECT	nucleoplasm	<u>RT</u>		119	2.5E-9	4.6E-7
	UP_KW_CELLULAR_COMPONENT	Nucleus	<u>RT</u>		130	5.5E-7	2.2E-5
	GOTERM_CC_DIRECT	nucleus	<u>RT</u>		128	1.6E-2	6.5E-1
Annota	tion Cluster 3	Enrichment Score: 2.37	G	- 	Count	P_Value	Benjamini
	UP_KW_MOLECULAR_FUNCTION	Ribonucleoprotein	<u>RT</u>	- -	20	1.8E-6	1.1E-4
	UP_KW_MOLECULAR_FUNCTION	Ribosomal protein	<u>RT</u>	- -	14	3.9E-5	8.1E-4
	GOTERM_CC_DIRECT	ribosome	<u>RT</u>	- -	13	1.5E-4	1.4E-2
	GOTERM_BP_DIRECT	translational initiation	<u>RT</u>	- -	11	1.7E-4	9.4E-2
	GOTERM_MF_DIRECT	structural constituent of ribosome	<u>RT</u>	- -	12	7.4E-4	1.4E-1
	GOTERM_BP_DIRECT	translation	<u>RT</u>	- -	12	2.9E-3	6.6E-1
	GOTERM_BP_DIRECT	cytoplasmic translation	RT		7	5.9E-3	9.9E-1
	GOTERM_CC_DIRECT	cytosolic small ribosomal subunit	<u>RT</u>		5	9.3E-3	5.0E-1
	GOTERM_CC_DIRECT	cytosolic ribosome	<u>RT</u>		6	1.4E-2	6.5E-1
	KEGG_PATHWAY	Ribosome	<u>RT</u>	•	8	2.4E-2	1.0E0
	GOTERM_BP_DIRECT	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	* <u>RT</u>	÷	7	2.5E-2	1.0E0
	GOTERM_BP_DIRECT	SRP-dependent cotranslational protein targeting to membrane	RT	4	6	2.6E-2	1.0E0
	UP_KW_DISEASE	Diamond-Blackfan anemia	RT	1 · · · · · · · · · · · · · · · · · · ·	3	4.0E-2	5.3E-1
	GOTERM_BP_DIRECT	viral transcription	RT		6	5.6E-2	1.0E0
	KEGG_PATHWAY	Coronavirus disease - COVID-19	RT	• • • • • • • • • • • • • • • • • • •	7	2.4E-1	1.0E0
	GOTERM_BP_DIRECT	rRNA processing	RT		5	4.8E-1	1.0E0