
- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

What is mapping?

- Map reads against a reference genome
 - = Predict the locus from which a read originates
 - → Find the loci with sufficient similarity

- Sufficient similarity
 - → Less mismatches / indels

Alignment

reference genome

reads

CACGTACC

CACGTTCC

CACGTA_CC

CACGTACC

CC CACGTATCC

CACGT_CC

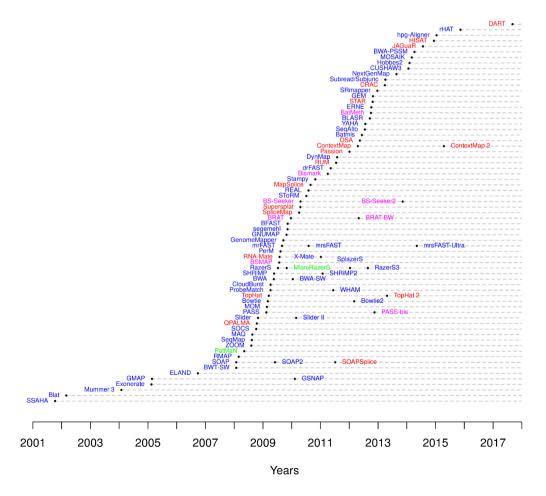
mismatch

indels (insertion/deletion)

Challenges of short read mapping

- Reference sequence can be large (~3 Gb for human)
- Short reads → several, equally likely places in reference sequence from which they could have been read e.g. repetitive regions
- The genome from which reads have been generated may be different from the reference genome
 - → Need to allow mismatches and indels
- Need to tolerate sequencing errors in reads
- Need to do that for each of the millions of reads!
- → Too long with traditional mappers such as BLAST or BLAT
- → Specialized read mappers with highly efficient algorithms

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

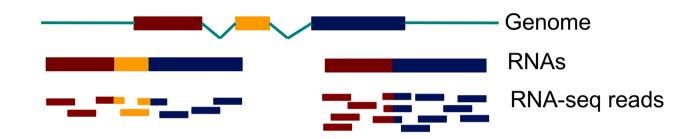

Computational strategies

Indexing

- Like the index at the end of a book
 - → an index of a large DNA sequence allows one to rapidly find shorter sequences embedded within it
- Transforming
 - Uses a technique originally developed for compressing large files called the Burrows-Wheeler transform (BWT)
 - → The transformed human genome fits into memory
- Example : Bowtie2 (Langmead et al. Nature Methods 2012)
 - To rapidly narrow the number of possible alignments that must be considered
 - Begins by extracting substrings ("seeds") from each read and its reverse complement
 - Aligning them in an ungapped fashion using an index
 - → Trade-off between speed and sensitivity can be adjusted by setting the seed length, the interval between extracted seeds and the number of mismatches in seed
 - Extend seeds to full reads alignment (allowing gaps)

A lot of tools developed ...

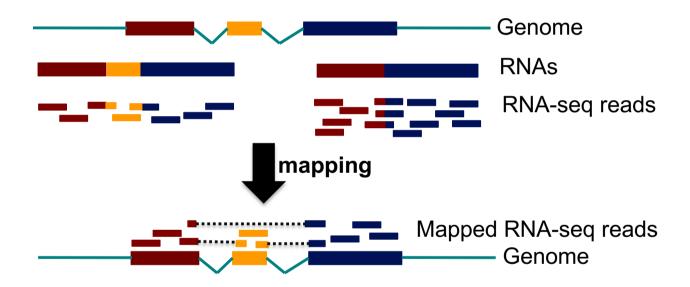
More than 90 mapping tools


DNA mappers RNA mappers miRNA mappers bisulfite mappers

How to choose a mapper?

- Main criteria to take into account
 - Sensitivity
 - Ability to align a large fraction of reads with errors and variants
 - Accuracy
 - If an aligner aligns a large fraction of reads, but most alignments are wrong, this is useless!
 - Type of data (DNA, RNA), support of paired-end
 - Read length limits
 - Quality aware
 - Multi-mapping reporting
 - Speed
 - Memory requirements
- Feature comparison
 - Fonseca et al. Bioinformatics 2012;28 (24): 3169-3177

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

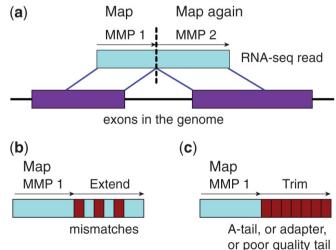

Specificity of RNA-seq reads

→ In an RNA-seq library, several reads span exon junctions

Spliced mapping

Allows mapping of reads across splice junctions

- Spliced alignment programs comparison
 - Engström et al. Nature Methods 2013
 - Baruzzo et al. Nature methods 2017

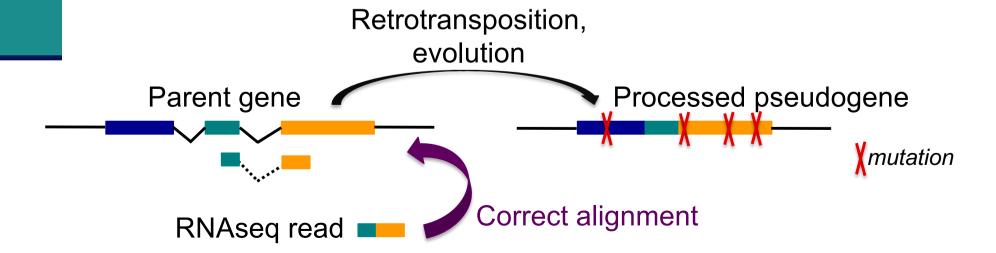

STAR Spliced Transcripts Alignment to a Reference

1. Searching for seeds

- For every read : searches for the longest sequence that exactly matches one or more locations on the reference genome : Maximal Mappable Prefix (MMP)
 → MMP1 (seed 1)
- Searches for only the unmapped portion of the read to find the next longest sequence that exactly matches the reference genome → MMP2
- MMP search enables finding mismatches or tails :
 - If MMP search does not reach the end of a read (a)
 - → MMPs serve as anchors in the genome that can be extended
 - → If the extended alignment is not good : tail is soft-clipped


2. Stitching all seeds

→ alignment of the entire read sequence



Main problems of RNA-seq aligners

■ Difficult to accurately detect splicing events involving short sequence overhangs on the donor or acceptor side of a junction

Alignments biased toward processed pseudogenes

Use of annotations in spliced mapping

Use splice junctions annotations to mitigate this problem

STAR

- Option to provide annotations
- Incorporates annotated junction sequences into the suffix array
- Searches the seeds that cross the junctions simultaneously with the seeds that map contiguously to the genome

Genome annotations

- Ensembl project (www.ensembl.org)
 - Goal: automatically annotate genomes, integrate this annotation with other available biological data and make all this publicly available
 - Includes manual curation (by HAVANA) for some species: human, mouse, zebrafish, rat
 - Ensembl data is released on an approximately three-month cycle
- Ensembl genome annotations available on
 - ftp://ftp.ensembl.org/pub/
 - Important to use the same annotation version throughout a project, access to old versions via View in archive site
- The main Ensembl site focuses on vertebrate genomes and some other representative species (http://www.ensembl.org/info/about/species.html), other sites are dedicated to plants, fungi, bacteria (cf "Our sister sites" links at the bottom of www.ensembl.org)
- Other annotation sources
 - e.g., ordered from most to least complex : AceView, Ensembl, UCSC, Refseq
 Genes (Wu et al. BMC Bioinformatics 2013 ;14 Suppl 11:S8)

Genome annotations

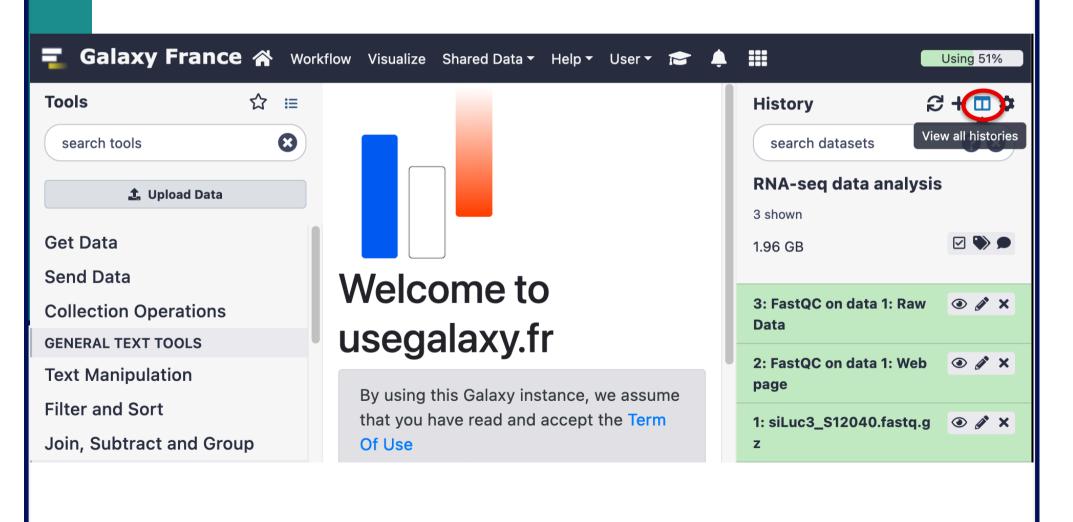
- Generally provided in a GTF (Gene Transfert Format) / GFF (General Feature Format) file
- GTF file :
 - Tab-delimited text file format
 - Each line correspond to an annotation or feature
 - Specifications :
 - http://www.ensembl.org/info/website/upload/gff.html
 - e.g. human Ensembl 105 GTF file
 - ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.chr.gtf.gz
 - Caution: use annotations corresponding to the version of genome assembly you are working on
 - GRCh38 (1 22, X, Y, MT) / hg38 (chr1 chr22, chrX, chrY, chrM)

Genome annotations

- Generally provided in a GTF (Gene Transfert Format) file
 - Nine columns :

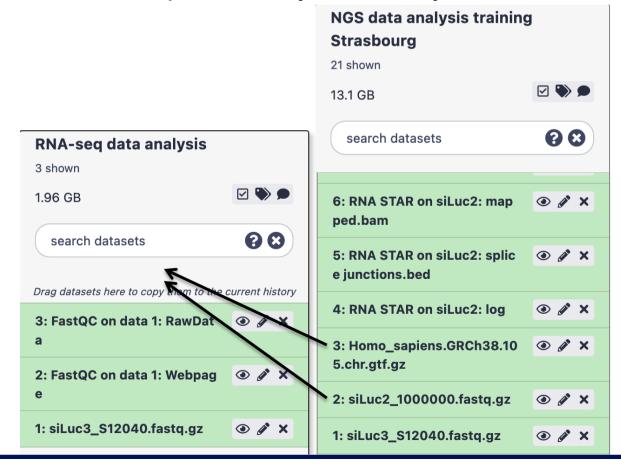
Seqid	Source	Туре	Start	End	Score	Strand	Phase	Attributes
2	ensembl_havana	gene	227813842	227817564		+		ļ
2	havana	transcript	227813842	227817564		+		/
2	havana	exon	227813842	227813987		+		/
2	havana	CDS	227813912	227813987		+	0	/
2	havana	start_codon	227813912	227813914		+	0	į
2	havana	exon	227815457	227815568		+		į
2	havana	CDS	227815457	227815568		+	2	İ
								 - -

gene_id "ENSG00000115009"; gene_version "11"; transcript_id "ENST00000409189"; transcript_version "7"; exon_number "1"; gene_name "CCL20"; gene_source "ensembl_havana"; gene_biotype "protein_coding"; havana_gene "OTTHUMG00000133189"; havana_gene_version "3"; transcript_name "CCL20-001"; transcript_source "havana"; transcript_biotype "protein_coding"; ...


- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

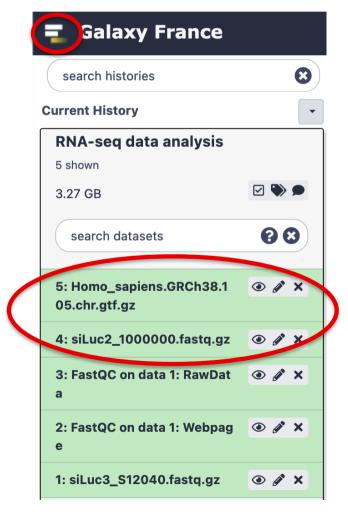
Exercise 1 Mapping of RNA-seq data using Galaxy

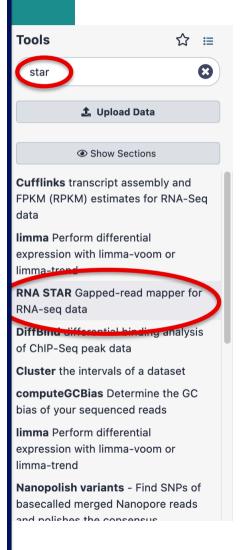
- Map 1 million reads from siLuc2 mRNA-seq sample using STAR
 - 1. Copy to your history
 - The corresponding FASTQ file :
 - 2: siLuc2_1000000.fastq.gz
 - The GTF annotation file :
 - 3: Homo sapiens.GRCh38.105.chr.gtf.gz
 - 2. Launch STAR on this FASTQ file using
 - GRCh38 reference genome
 - Homo_sapiens.GRCh38.105.chr.gtf.gz GTF annotation file

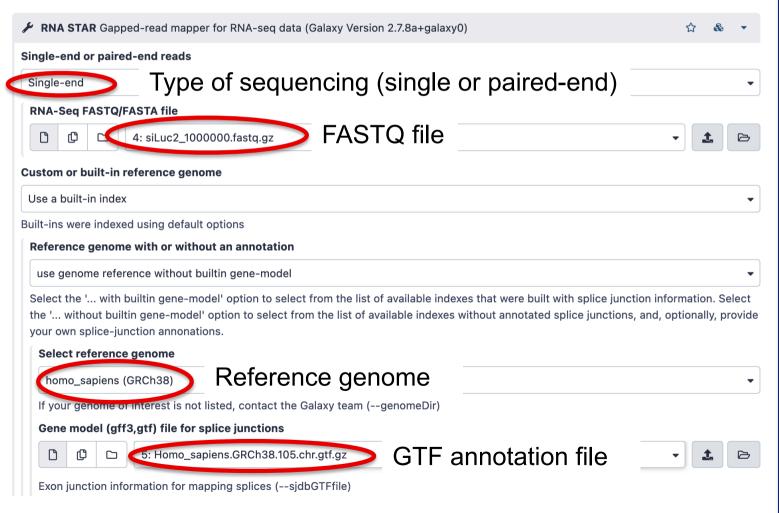

Exercise 1 1. Copy files to your history

Click on "View all histories"

Exercise 1 1. Copy files to your history


- Drag datasets 2 and 3
 - from "NGS data analysis training Strasbourg" history
 - to "RNA-seq data analysis" history


Exercise 1 1. Copy files to your history


You have now in your history all files needed to launch

STAR:

Exercise 1 2. Launch STAR

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

- Sequence Alignment/Map format → standard alignment format
- Text file containing all information about an alignment
- SAM format specifications
 - Li et al., Bioinformatics 2009;25(16):2078-9.
 - http://samtools.github.io/hts-specs/SAMv1.pdf
- Header section
 - Generic information regarding the SAM file, not required
 - Each line starts with @ and is tab-delimited
 - @HD : SAM file version, whether the file is sorted
 - @SQ : Name + length of reference sequences used for alignment

...

Header section example:

@HD VN:1.4 SO:coordinate
@SQ SN:1 LN:248956422
@SQ SN:10 LN:133797422
@SQ SN:11 LN:135086622
@SQ SN:12 LN:133275309

. . .

- Alignment section : 11 mandatory fields + optional fields
- Mandatory fields :

Col	Field	Туре	N/A Value	Description
1	QNAME	string	mandatory	The query/read name.
2	FLAG	int	mandatory	The record's flag.
3	RNAME	string	*	The reference name.
4	POS	32-bit int	0	1-based position on the reference.
5	MAPQ	8-bit int	255	The mapping quality.
6	CIGAR	string	*	The CIGAR string of the alignment.
7	RNEXT	string	*	The reference of the next mate/segment.
8	PNEXT	string	0	The position of the next mate/seggment.
9	TLEN	string	0	The observed length of the template.
10	SEQ	string	*	The query/read sequence.
11	QUAL	string	*	The ASCII PHRED-encoded base qualities.

Alignment section example:

■ Flag (number)

Describes the alignment

e.g. reverse strand, not primary alignment, unmapped

Explain SAM flags in plain English:

https://broadinstitute.github.io/picard/explain-flags.html

Mapping quality (number)

Indicates whether the read is correctly mapped to this location in the reference genome

- STAR mapping quality
 - 60 by default on Galaxy for uniquely mapped reads
 - $int(-10*log_{10}(1-1/N_{map}))$ for multi-mapping reads N_{map} : the number of loci a read maps to

N_{map}	MAPQ
2	3
3-4	1
≥ 5	0

- CIGAR (string)
 - M: alignment (can be a sequence match or mismatch)
 - I: insertion to the reference
 - D : deletion from the reference
 - N : skipped region from the reference
 - S: soft clipping (clipped sequences present in SEQ)
 - Bases of the read that are not aligned
 - H: hard clipping (clipped sequences not present in SEQ)
 - Bases of the read that are not aligned and that have been removed from the read sequence in the SAM file

- CIGAR example
 - Alignment :

```
Reference 
C A T A C T _ G A A C T G A C T A A C

Read 
A C T A G A A _ T G G C T
```

CIGAR :

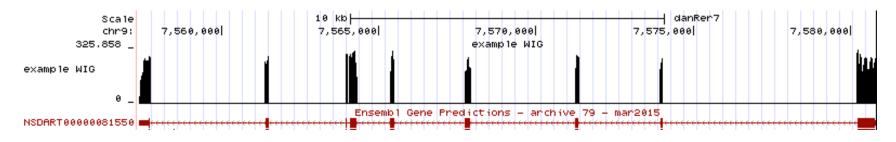
3M1I3M1D5M

- 3M: the first 3 bases in the read sequence align with the reference
- 11: the next base in the read does not exist in the reference
- 3M: then 3 bases align with the reference
- 1D : the next reference base does not exist in the read sequence
- 5M: then 5 more bases align with the reference
 - Note that among these bases one is different from the reference but it still counts as an M since it aligns to that position

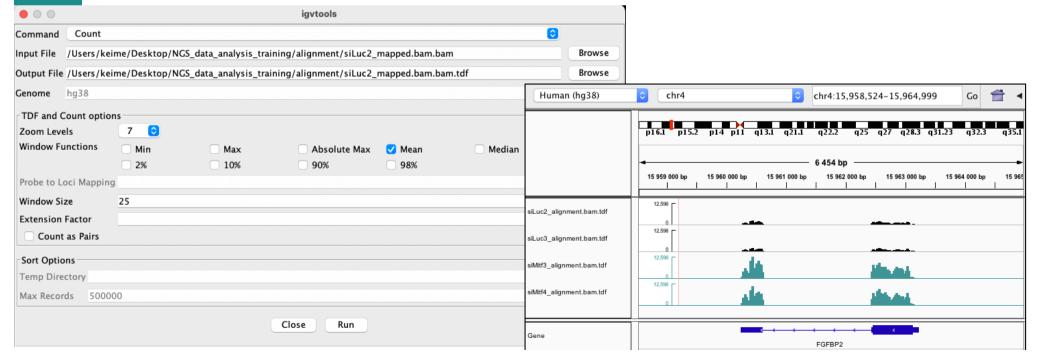
Additional tags (format tag:type:value)

Tag^4	Type	Description			
X?	?	Reserved fields for end users (together with Y? and Z?)			
AM	i	The smallest template-independent mapping quality of segments in the rest			
AS	i	Alignment score generated by aligner			
BC	\mathbf{Z}	Barcode sequence, with any quality scores stored in the QT tag.			
BQ	\mathbf{Z}	Offset to base alignment quality (BAQ), of the same length as the read sequence. At the			
		<i>i</i> -th read base, $BAQ_i = Q_i - (BQ_i - 64)$ where Q_i is the <i>i</i> -th base quality.			
CC	\mathbf{Z}	Reference name of the next hit; '=' for the same chromosome			
CM	i	Edit distance between the color sequence and the color reference (see also NM)			
CO	\mathbf{z}	Free-text comments			
CP	i	Leftmost coordinate of the next hit			
CQ	\mathbf{z}	Color read quality on the original strand of the read. Same encoding as QUAL; same			
	_	length as CS.			
CS	Z	Color read sequence on the original strand of the read. The primer base must be included.			
CT	Z	Complete read annotation tag, used for consensus annotation dummy features ⁵ .			
E2	Z	The 2nd most likely base calls. Same encoding and same length as QUAL.			
FI	i	The index of segment in the template.			
FS	Z	Segment suffix.			
FZ	$_{\mathrm{B,S}}$	Flow signal intensities on the original strand of the read, stored as (uint16_t)			
		round(value * 100.0).			
LB	Z	Library. Value to be consistent with the header RG-LB tag if @RG is present.			
НО	i	Number of perfect hits			
H1	i	Number of 1-difference hits (see also NM)			
H2	i	Number of 2-difference hits			
HI	i	Query hit index, indicating the alignment record is the i-th one stored in SAM			
IH	i	Number of stored alignments in SAM that contains the query in the current record			
MC	Z	CIGAR string for mate/next segment			
MD	Z	String for mismatching positions. Regex: $[0-9]+(([A-Z] \^[A-Z]+)[0-9]+)*^6$			
MQ	i	Mapping quality of the mate/next segment			
NH	i	Number of reported alignments that contains the query in the current record			
NM	i	Edit distance to the reference, including ambiguous bases but excluding clipping			

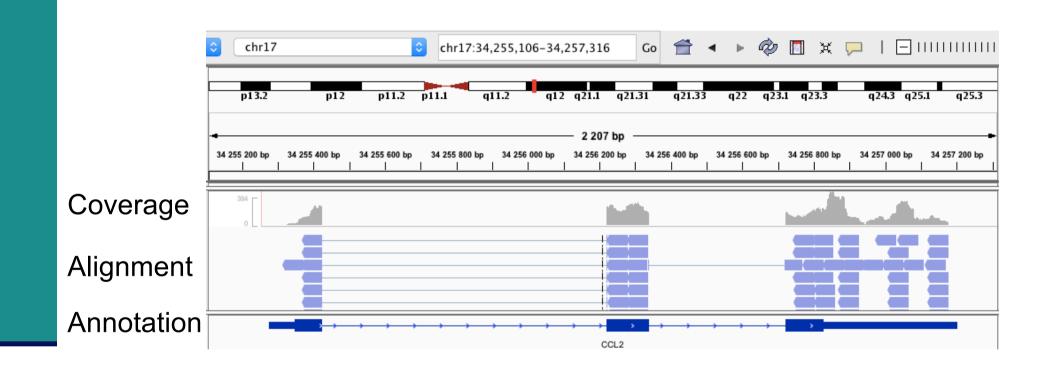
- Binary file
- Compressed version of SAM format
- BAM files can be sorted and indexed
 - Makes accessing data very fast
- BAI (extension .bai) : index for a BAM file
 - sample.bam.bai index for sample.bam file


Utilities to manipulate SAM/BAM files

- Samtools (http://www.htslib.org/)
 - Various utilities for manipulating alignment in SAM format (SAM <> BAM conversion, calculating statistics on alignments, ...) – available on Galaxy
- Igvtools (http://software.broadinstitute.org/software/igv/)
 - sort, index, ...
 - Integrative Genomics Viewer
 - → Tools menu
 - → run igvtools

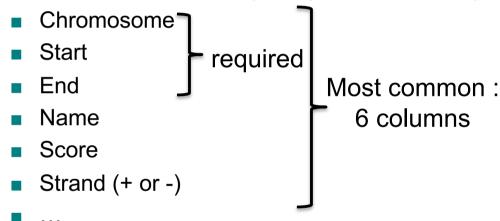

Wiggle (WIG) file format

- Tab-delimited text file
- For dense continuous data
 - e.g. coverage : "summary" generated from an alignment→ only density information
- Each line represents a portion of a chromosome
- Columns:
 - Chromosome
 - Start
 - End
 - Value
- More precise definition and examples
 - http://genome.ucsc.edu/goldenPath/help/wiggle.html
- Compressed binary indexed file derived from a WIG file : bigWig



TDF file format

- Tiled data file
- Binary file
- Read count density
 - Pre-processed data for faster display in IGV
- TDF file can be computed from a BAM file using igvtools
 - IGV Tools menu → run igvtools → Count



Coverage vs alignment

Browser Extensible Data (BED) format


- Tab-delimited text file
- For genomic intervals
- From 3 to 12 columns (always in this order) :

- More precise definition and examples
 - http://genome.ucsc.edu/FAQ/FAQformat.html#format1
- Manipulation of BED files
 - BEDTools (different tools available on Galaxy): https://bedtools.readthedocs.io

Gene Transfert Format (GTF)

- GTF files can be visualized using IGV
 - e.g. Ensembl 105 annotations downloaded from http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.chr.gtf.gz
- Sort (by start position) and index for faster display
 - Tools → Run igvtools → Sort
 - → Homo_sapiens.GRCh38.105.chr.sorted.gtf
 - Tools → Run igvtools → Index
 - → Homo sapiens.GRCh38.105.chr.sorted.gtf.idx (in the same directory)
 - File → Load from file and choose Homo_sapiens.GRCh38.105.chr.sorted.gtf

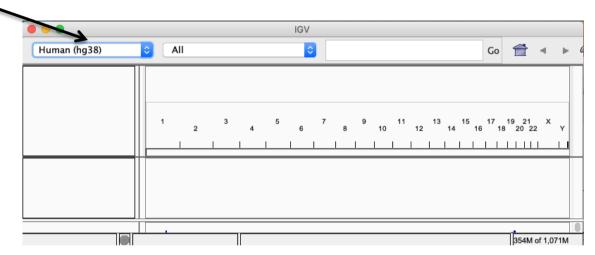
Main NGS file formats: summary

- **■** FASTQ
 - Raw data
- SAM / BAM
 - alignment
- WIG / bigWig / TDF
 - coverage
- BED
 - Genomic intervals
- GTF
 - annotations

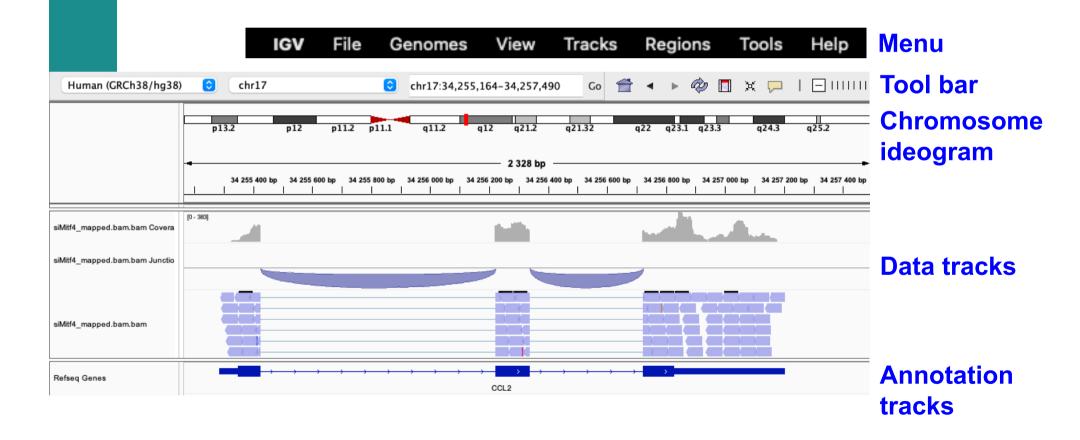
text binary

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments


Alignment visualization

- Using a Genome Browser
 - A lot of available genome browsers
 - Ensembl, UCSC, Jbrowse, IGB, IGV, ...
 - During this training we will use Integrative Genomics Viewer
 - http://www.broadinstitute.org/igv/


Using IGV: basic steps

Select a reference genome

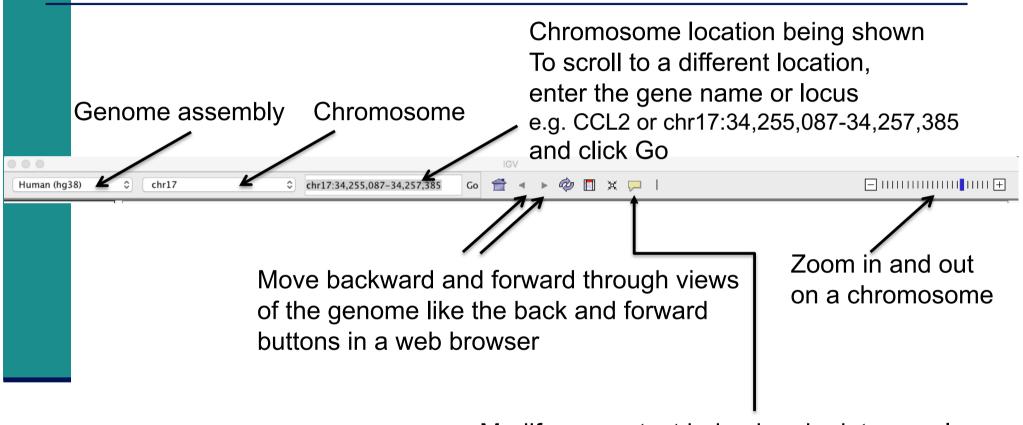
- Load data
 - File → load from file
 - File → load from server
 - Many tracks from different formats can be visualized on the same window (but they must correspond to the same assembly!)
- Navigate through the data

IGV

IGV menu: main features

File

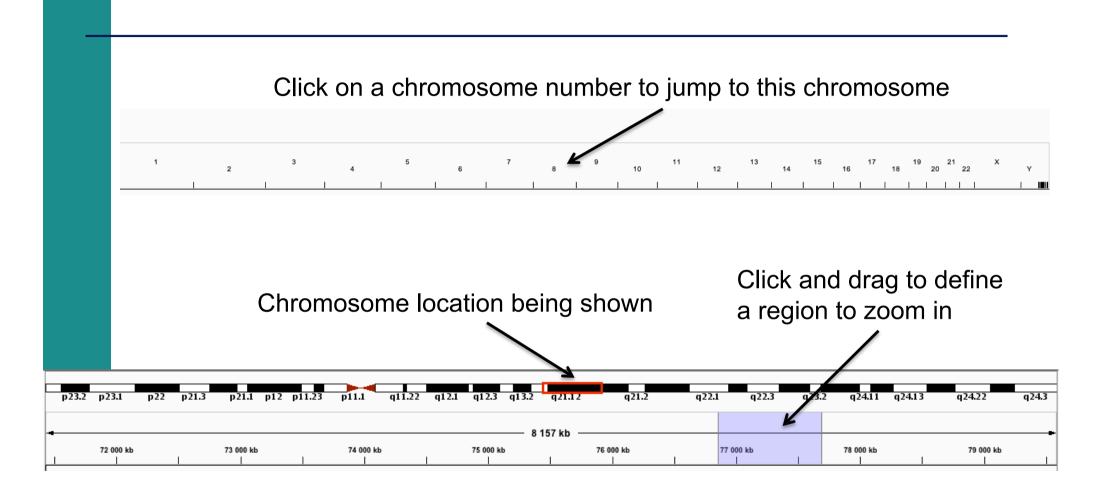
- Load files into IGV
- Manage sessions (e.g. save your current settings to a named session file)
- Save an image


Genome

- Manage genomes available on IGV data server (http://software.broadinstitute.org/software/igv/Genomes)
- Create new genomes (required : FASTA file, optional : annotation file, ...)

View

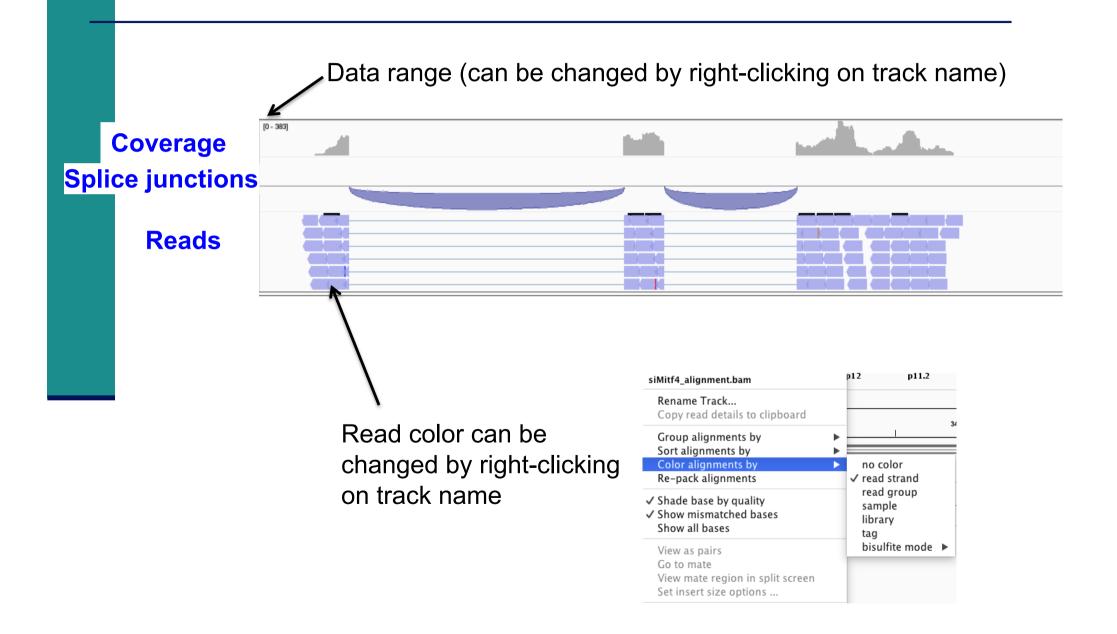
- Preferences : customize the display
- Tools
 - Run igvtools : count (→ tdf), sort, index


IGV tool bar: main features

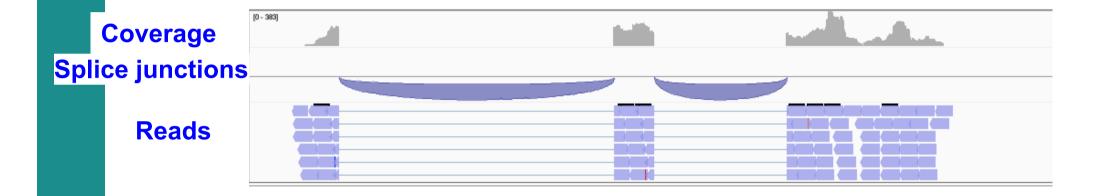
Modify popup text behaviour in data panels

- Show details on hover
- Show details on click

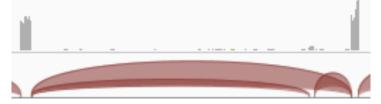
IGV: chromosome ideogram



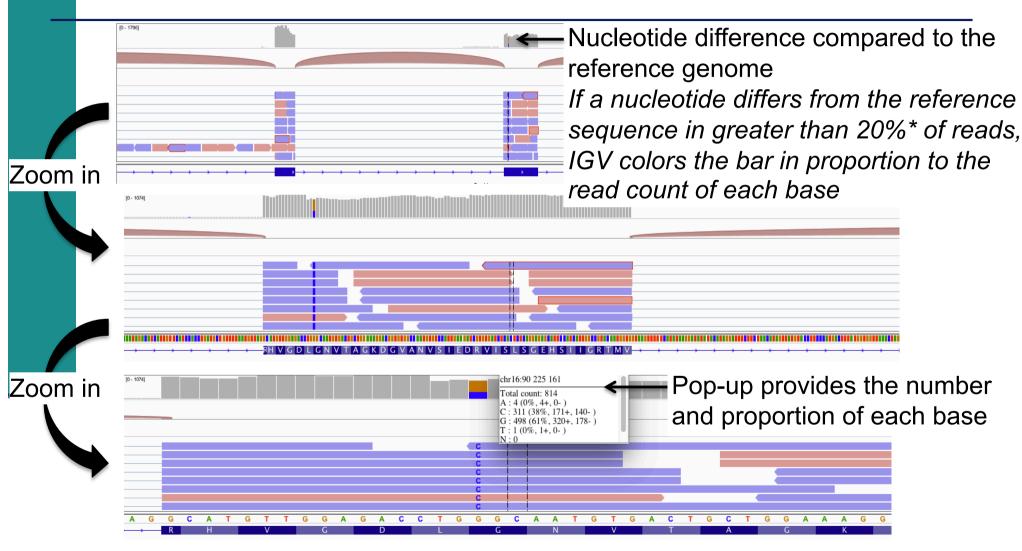
IGV : Data track



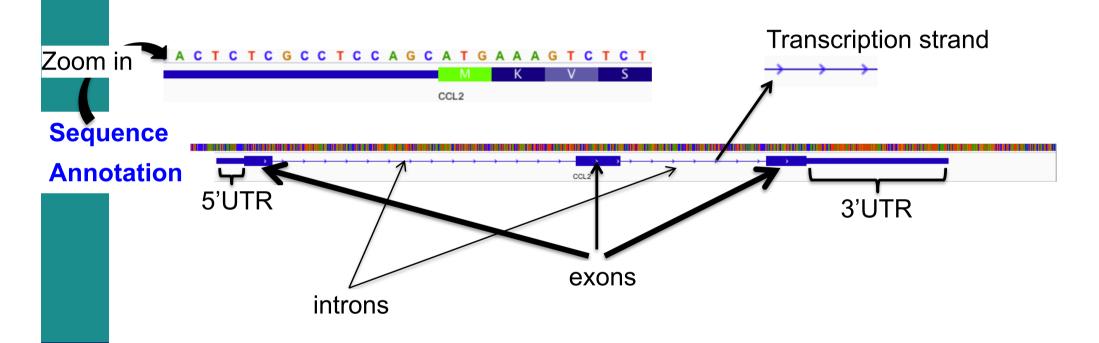
By default a sample of the alignments, to use less memory (can be changed in View → Preferences → Alignments)


IGV: Data track


IGV: Data track


- Display of splice junctions
 - Color → strand
 - Thickness → depth of coverage
 - All junctions with more than 50 reads have the same thickness

IGV: Data track

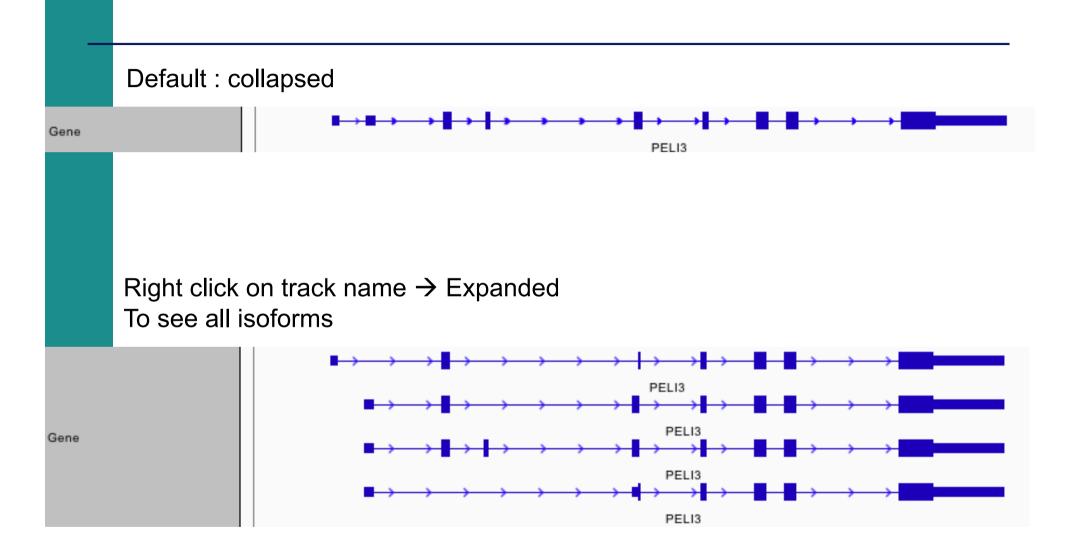


IGV data track differences vs reference genome

^{*} Default threshold, can be changed in View → Preferences → Alignment → Coverage allele-fraction threshold

IGV annotation track

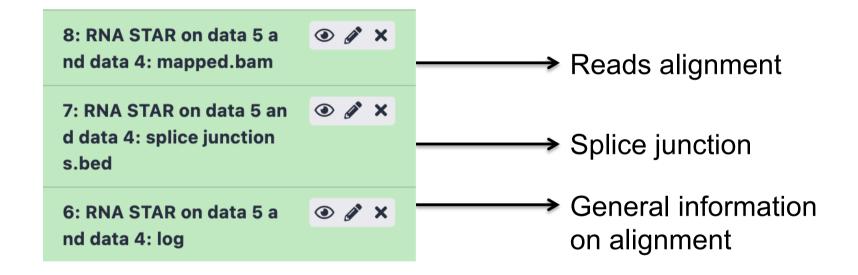
→ Hover your mouse over images, pop-up windows provide additional information :


CCL2 chr17:34255277-34257201

 $id = NM_002982$

Exon number: 2

Amino acid coding number: 51 chr17:34256222-34256339


IGV annotation track

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

Exercise 1 : results

Exercise 1: interpretation of results

1. Log file

What is the proportion of uniquely mapped reads?

2. Alignment file

- Which alignment file format is provided by STAR?
- Download this file and the index, visualize this alignment using IGV
- Look at reads mapped on the junction between the 2 last exons of Park7 gene. How many reads span this junction? Look at the CIGAR string of one of these reads
- Visualize the strand specificity of the reads, for example on Park7 and Chmp2a genes (color alignments by strand)
- Look at reads aligned on *Actb* gene (color alignments by number of reported alignments : tag=NH). What do you observe?

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

- STAR results for all samples from Mitf project are available on Galaxy
 - Datasets 4 to 15:

- 1. What is the proportion of uniquely mapped reads in all samples?
- To save time, the corresponding BAM, BAI and tdf files are already available on your computer (RNAseq/alignment folder)
- Start a new IGV session (File → new session)
- In View → Preferences → Tracks tab, select "Normalize coverage data"
- Load the 4 tdf files on IGV
- Right-click on all track names and choose "Group Autoscale"
- 2. We are interested in *Idh1* gene. Is this gene differentially expressed between siLuc and siMitf samples?

In IGV preferences (View → Preferences) "Alignments" tab

- In "Track Display" section, check "Show junction track"
- In "Splice Junction Track" section, choose "Minimum junction coverage": 10

Open a new session (File → New session), then load the 4 BAM files

- 3. What do you observe in exons 11 and 13 of *Eef2* gene?
- 4. What do you observe at position chr4:6707961?
- 5. Which transcript isoforms do you observe in region chr20:44,935,294-44,939,521?

Notes:

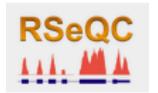
- To see all annotated isoforms right click on an annotation track and select Expanded
- You can perform a Sashimi-plot for a better visualization of isoforms : Right-click on a BAM track → Sashimi plot
 - → Select Alignment Tracks : all alignments

6. The same RNA samples have been processed with a different RNA-seq protocol. The corresponding alignment file for siLuc2 sample is available on your computer :

RNAseq/other_protocol/siLuc2_other_protocol_mapped.bam

What do you think about this protocol?

Look for example at *Park7* gene


NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 - Exercise 3 : QC on alignments

Quality control of RNA-seq data based on alignments

- Proportion of mapped, uniquely and multiple mapped reads in all samples within a project
- Read distribution relative to known annotations
- Read coverage over genes
- Strand information (directional protocol)
- For paired-end sequencing : distance between reads

http://rseqc.sourceforge.net/

RSeQC tools available on Galaxy

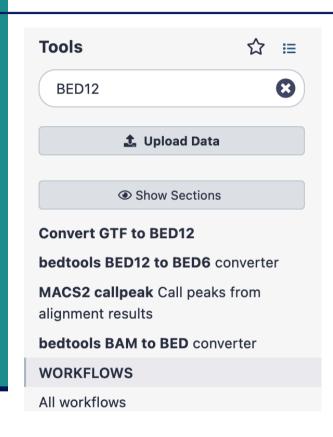
RSeQC input: alignment (BAM/SAM) and annotation (BED) files

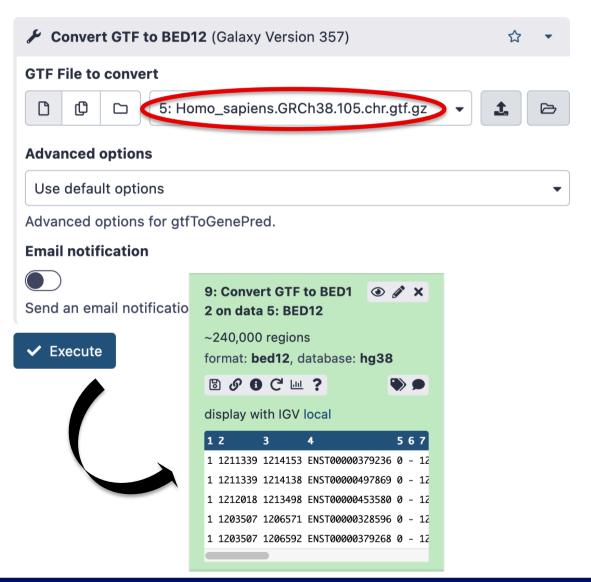
Read distribution relative to known annotations

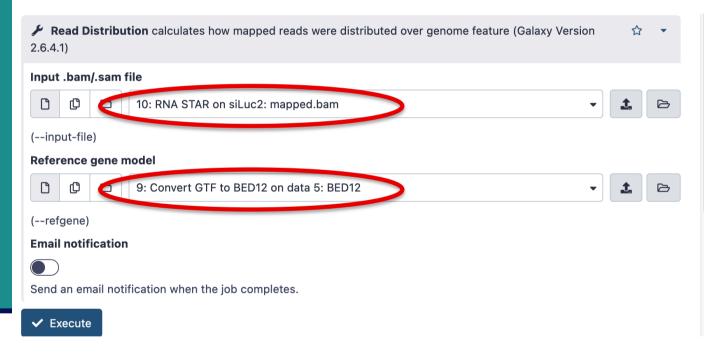
- How mapped reads are distributed over genomic features (CDS, UTR, intron, intergenic regions)
- RSeQC read distribution
 - Assigns mapped reads to a genomic feature
 - When genomic features overlap, they are prioritized as:
 - CDS > UTR > Introns > Intergenic regions
 - Does not assign reads located beyond TSS upstream 10Kb or TES downstream 10Kb

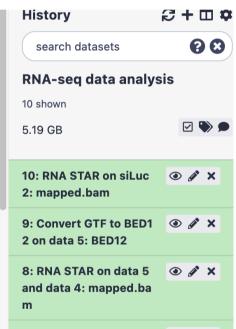
CDS: Coding DNA Sequence

UTR : UnTranslated Region


TSS: Transcription Start Site


TES: Transcription End Site


- Convert GTF annotation file to BED file using Convert GTF to BED12 tool
 - Annotation file to use (already imported)

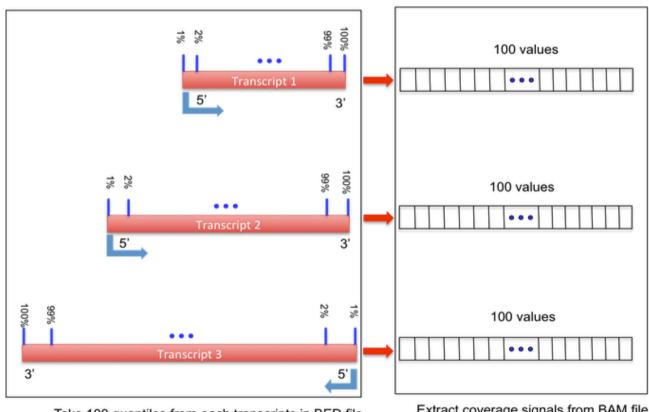

Homo_sapiens.GRCh38.105.chr.gtf.gz

- 2. Launch **Read distribution** on the mapping results from siLuc2 sample
 - Alignment file to import
 - 6: RNA STAR on siLuc2: mapped.bam
 - Annotations
 - Bed file obtained during step 1

Read distribution

Total	Reads		43080660
Total	Tags*		49982200
Total	Assigned	Tags °	46821353

Group	Total_bases	Tag_count	Tags/Kb
CDS_Exons	35875018	30475010	849.48
5'UTR_Exons	48312525	2562470	53.04
3'UTR_Exons	75444264	10416230	138.07
Introns	1613277549	3000938	1.86
TSS_up_1kb	28388776	36020	1.27
TSS_up_5kb	126596357	66649	0.53
TSS_up_10kb	225614841	90707	0.40
TES_down_1kb	30986381	124903	4.03
TES_down_5kb	133535951	201514	1.51
TES_down_10kb	233464669	275998	1.18

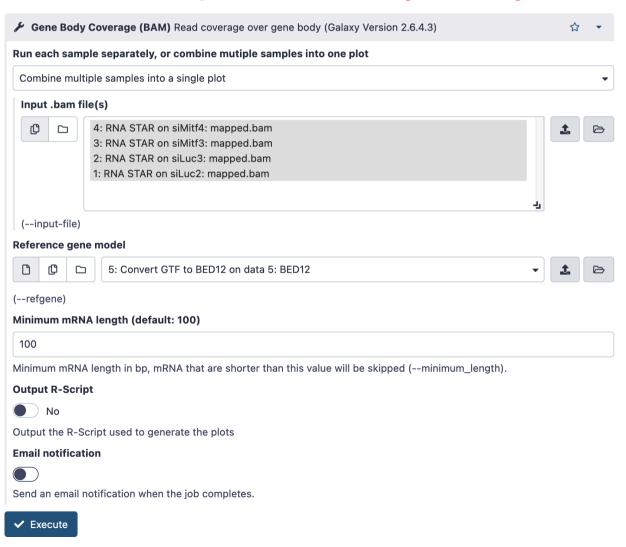

^{*} reads spliced once are counted as 2 tags, reads spliced twice are counted as 3 tags, ...

Tags assigned to "TSS_up_1kb" are also assigned to "TSS_up_5kb" and "TSS_up_10kb" Tags assigned to "TSS_up_5kb" are also assigned to "TSS_up_10kb"

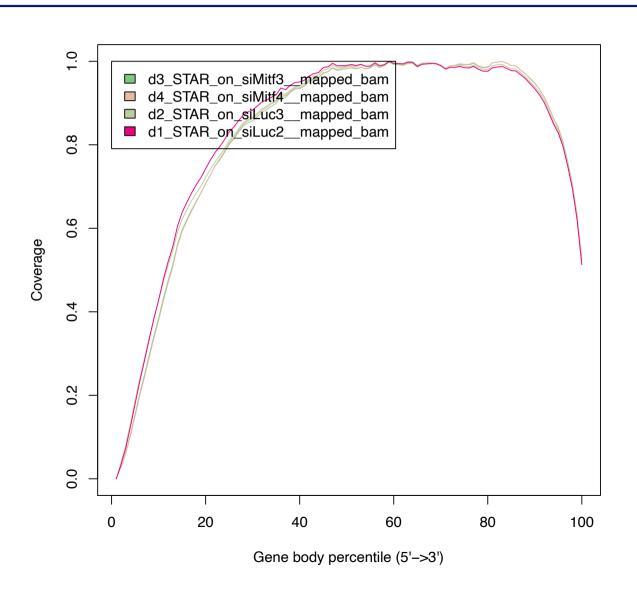
[°] number of tags that can be assigned to the 10 groups

Read coverage over genes

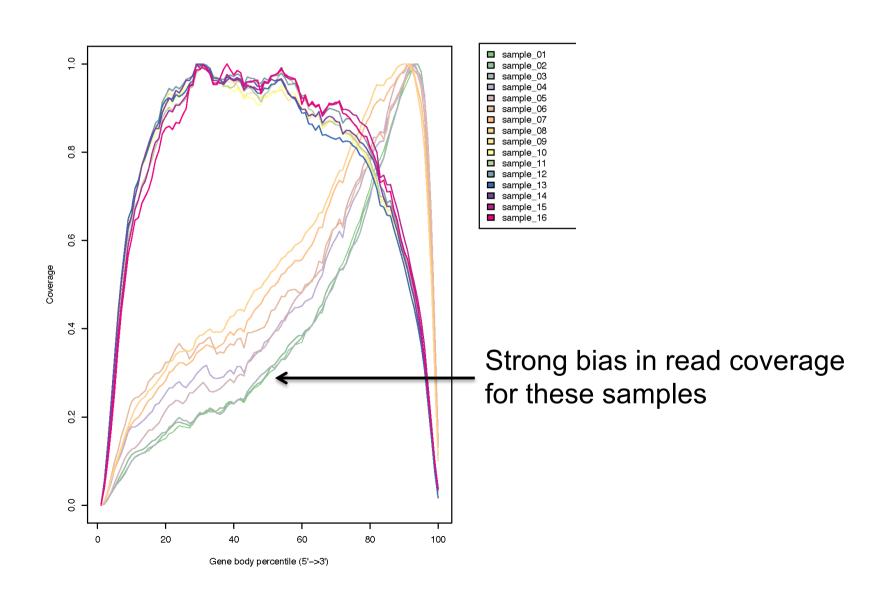
- To identify any bias in read coverage over genes
- RSeQC Gene Body Coverage



Take 100 quantiles from each transcripts in BED file

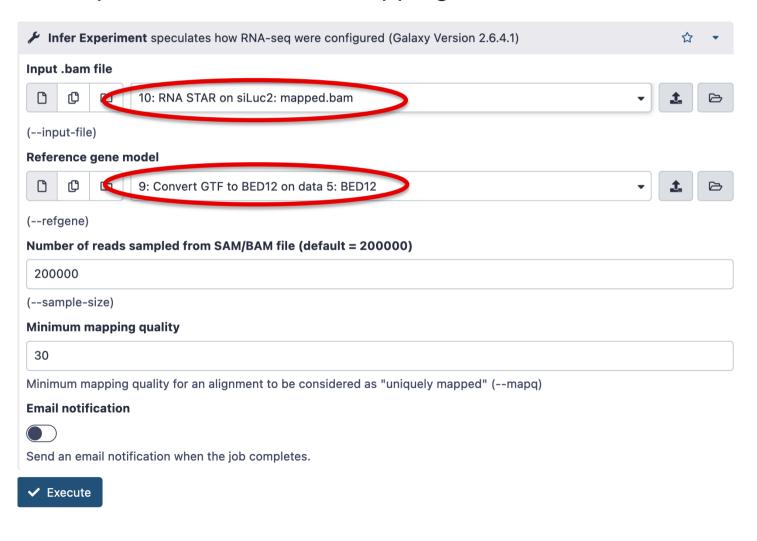

Extract coverage signals from BAM file From http://rseqc.sourceforge.net/

Read coverage over genes: Galaxy

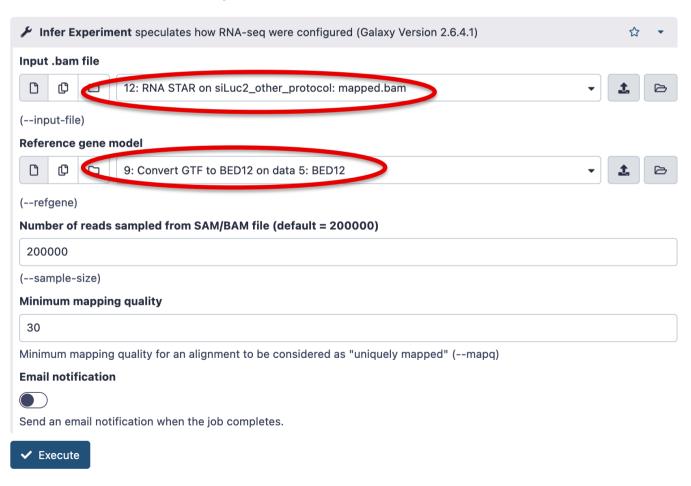

Don't perform this analysis today

Read coverage over genes: result

Read coverage over genes: example with biased samples


Strand information (directional protocol)

- To infer how reads were stranded for strand-specific RNA-seq data
 - Compare the "strandness of reads" with the "strandness of transcripts"
 - The "strandness of reads" is determined from alignment
 - The "strandness of transcripts" is determined from annotation
- RSeQC infer experiment
 - Calculates the proportion of reads corresponding to :
 - **++**,--
 - **+**-,-+

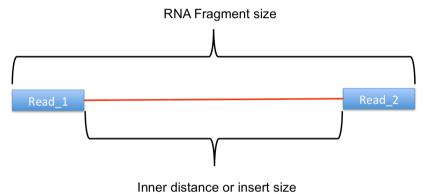

	Annotated gene on + strand	Annotated gene on - strand
Read mapped to + strand	++	+-
Read mapped to - strand	-+	

- Launch Infer experiment on the mapping results obtained on siLuc2 data from the two different protocols and compare the two results
 - Alignment files
 - RNA STAR on siLuc2: mapped.bam (already imported)
 - 16: RNA STAR on siLuc2_other_protocol: mapped.bam (to import)
 - Annotations
 - Bed file obtained during the previous exercise

■ Infer experiment on siLuc2 mapping results :

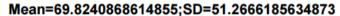
■ Infer experiment on siLuc2 mapping results from the library prepared with another protocol :

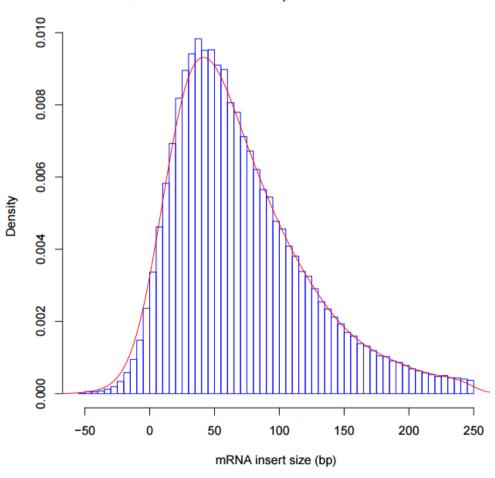
- Infer experiment
 - on siLuc2 library prepared with a directional protocol :


```
This is SingleEnd Data
Fraction of reads failed to determine: 0.1034
Fraction of reads explained by "++,--": 0.0078
Fraction of reads explained by "+-,-+": 0.8887
```

On siLuc2 library prepared with a non directional protocol :

```
This is SingleEnd Data
Fraction of reads failed to determine: 0.1446
Fraction of reads explained by "++,--": 0.4278
Fraction of reads explained by "+-,-+": 0.4277
```


Distance between reads (paired-end sequencing)


- To know inner distance (insert size) between paired reads
 - The distance is the mRNA length between two paired fragments

- RSeQC Inner Distance
 - Determines the genomic (DNA) size between two paired reads: D_size= read2_start read1_end
 - if 2 paired reads map to the same exon or a non-exonic region
 - inner_distance = D_size
 - if 2 paired reads map to different exons
 - inner_distance = D_size intron_size
 - The inner_distance might be a negative value if 2 fragments overlapped

RSeQC inner distance : example of result

