Correlation of RNA-seq and ChIP-seq data

Stéphanie Le Gras (slegras@igbmc.fr)

We want to know how many up-regulated genes contain a peak for MITF. Compare **Gene names** of the chIPseq data (annotation step) and the RNAseq data (up-regulated genes).

- Tool: use Venny (<u>https://bioinfogp.cnb.csic.es/tools/venny/</u>)
- Datasets:
 - Use the file siMitfvssiLuc.up.annot.txt (upregulated genes detected by SARtools annotated with BioMart).
 - Download it from your history « RNA-seq data analysis ».
 - Open it with Excel and copy paste the content of column « Gene name » in Venny. You can name this part of the diagramme « RNA-seq »
 - Use the file mitf_peaks.annot.tsv (all chIPseq peaks detected in the second run of MACS2 and annotated with BEDtools closest)
 - Download it from your history « ChIP-seq data analysis »
 - Open it with Excel and copy paste the content of column « O » (the one with Gene names) in Venny. You can name this part of the diagramme « ChIP-seq »

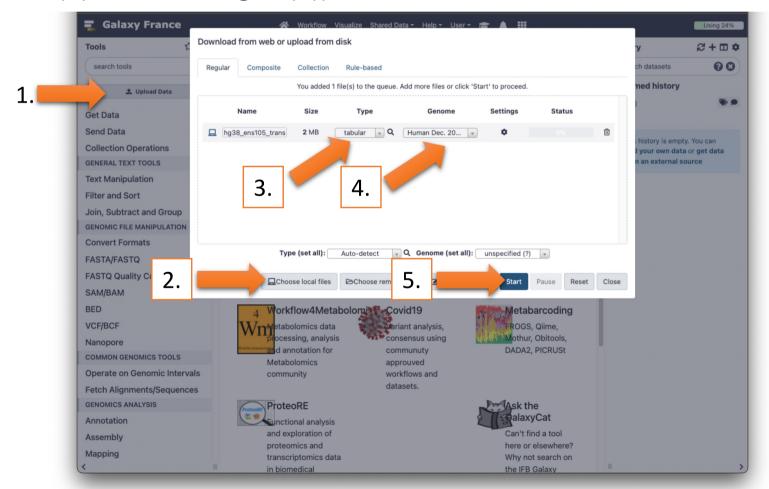
Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data.

Tool: seqMINER

Datasets:

- Reference coordinated: MITF_peak_summits.bed (from your history "ChIP-seq data analysis")
- Density
- seqMINER accept a tab separated file formatted like:
 - Gene ID <tab> Expression Values
 - Aligned reads (available in chipseq/mapping):
 - Mitf.sort.bam
 - H3K4me3.sort.bam
 - pollI.sort.bam
 - RNA-seq data:
 - seqMINER accept a tab separated file formatted like: Gene ID <tab> Expression Values
 - Expression values used in our example are normalized read counts divided by gene length in Kb.
 - Let's generate this file!

In seqMINER, we are going to visualize and compare expression values of different genes within the same sample. Read count per gene can not be directly compared together as they are correlated to the gene length. In the file siMitfvssiLuc.complete.txt, you can find normalized values. We are going to scale them as if genes were all of the same size.


Steps:

- 1. Extract transcript lengths [ensembl/BioMart]
- 2. As we are working on read counts per gene and not per transcript, compute a median of transcript lengths per gene [Galaxy]
- 3. Add the median of transcript lengths to the dataset siMitfvssiLuc.complete.txt [Galaxy]
- 4. Compute normalized and divided by median of transcripts length in kb values per gene on normalized data for siLuc (rounded mean of normalized counts) [Excel]

- 1. In Ensembl/BioMart
 - 1. For all genes, extract the following information:
 - Gene stable IDs
 - Transcript stable IDs
 - Transcript length (including UTRs and CDS)
 - 2. Rename the file: hg38_ens105_transcriptLength.txt.gz (compressed .gz)

	Archive, Ensembl Bion	Login/Register					
3. Get		fart Downloads Help & Docs Blog	ह्य - Search all species 🔍				
results	le Results	🔶 URL 🛃 XML 🛃 Peri 🛞 Hei	🖕 URL 💿 XML 😰 Peri 💿 Help				
1. No filter	Human genes (GRCh38.p13)	Export all results to Compressed file (.gz) VTSV V	Unique results only God 3. Export results				
1. NO Inter	[None selected]	View 10 v rows as HTML v 🗆 Unique results or	niy				
2. Select matributes	Attributes Gene stable ID Transcript stable ID Transcript length (including UTRs and CDS) Dataset [None Selected]	Gene stable ID Transcript stable ID Transcript length (including UTRs and CDS) ENSG0000210049 ENST00000387314 71 ENSG0000210175 ENST00000387342 69 ENSG0000210078 ENST00000387347 1559 ENSG0000210078 ENST00000387347 75 ENSG00000210070 ENST00000387347 75 ENSG00000210070 ENST00000387356 69 ENSG00000210171 ENST00000387372 72 ENSG00000210172 ENST00000387372 72 ENSG00000210172 ENST00000387373 68 ENSG00000198763 ENST00000361453 1042					
	Dataset [None Selected]	ENSG0000209082 ENST0000038347 75 ENSG00000198888 ENST00000381390 956 ENSG00000210100 ENST00000387355 69 ENSG00000210107 ENST00000387372 72 ENSG00000210112 ENST00000387377 68 ENSG00000198763 ENST00000361453 1042	tes are terminated. If you have				

3. Create a new history « Prepare RNA-seq data for seqMINER ». Import the file hg38_ens105_transcriptLength.txt.gz to Galaxy (type: tabular (3), Genome: hg38 (4))

2.1. Use the tool « **Datamash** (operations on tabular data) » to group gene by Ensembl Gene Ids and compute the median on transcript length:

- Input tabular dataset: hg38_ens105_transcriptLength.txt.gz
- Group by fields: [column with Gene stable ID] (1)
- Input file has a header line: Yes
- Print header line: Yes
- Operation to perform on each group:
 - **Type:** Median
 - On column: [column with Transcript length (including UTRs and CDS)] (3)
- 2.2. Use the tool « **Compute** » to round median values:
 - Add expression: round(c2) (change accordingly if needed)
 - Input has a header line with column names? Yes
 - The new column name: rounded median(Transcript length (including UTRs and CDS))
- 2.3. Use the tool « Advanced Cut » to extract only column of interest:
 - File to cut: [Compute on data *] (result of step 2.2)
 - Cut by: fields
 - List of Fields: Column: 1 Column: 3 (change accordingly if needed)

Rename resulting dataset: Median_of_transcript_length.tsv

3.

- 1. Import the file siMitfvssiLuc.complete.txt (history "RNA-seq data analysis") to Galaxy (type: tabular, Genome: hg38).
- 2. Use the tool "Join two Datasets" to join the two datasets siMitfvssiLuc.complete.txt and Median_of_transcript_length.tsv
 - Join: siMitfvssiLuc.complete.txt
 - Using column: 1
 - With: Median_of_transcript_length.tsv
 - and column: 1
 - Keep the header lines: Yes
- 3. Rename the file siMitfvssiLuc.complete.wTranscriptLength.tsv
- 4. Download siMitfvssiLuc.complete.wTranscriptLength.tsv and open it in excel.

4. In Excel (or an equivalent), add 1 column:

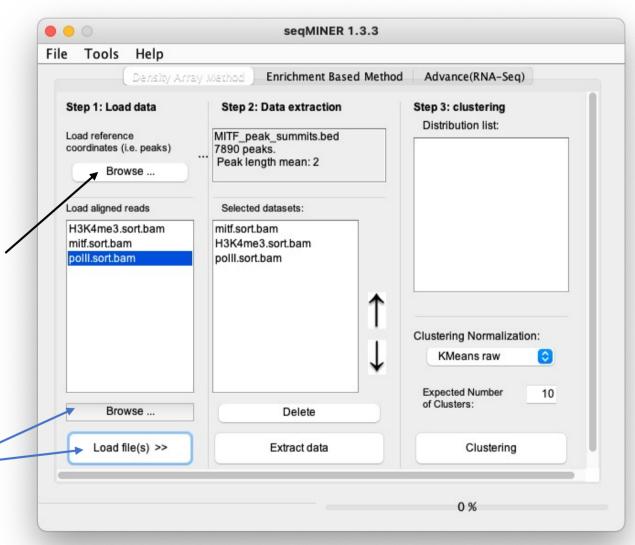
siLuc (normalized and divided by median of transcripts length in kb) filled with the following formula (French ; English)
 =ARRONDI(K2/Y2*1000/50;0) (K is the column : siLuc – Y is the column with round median)

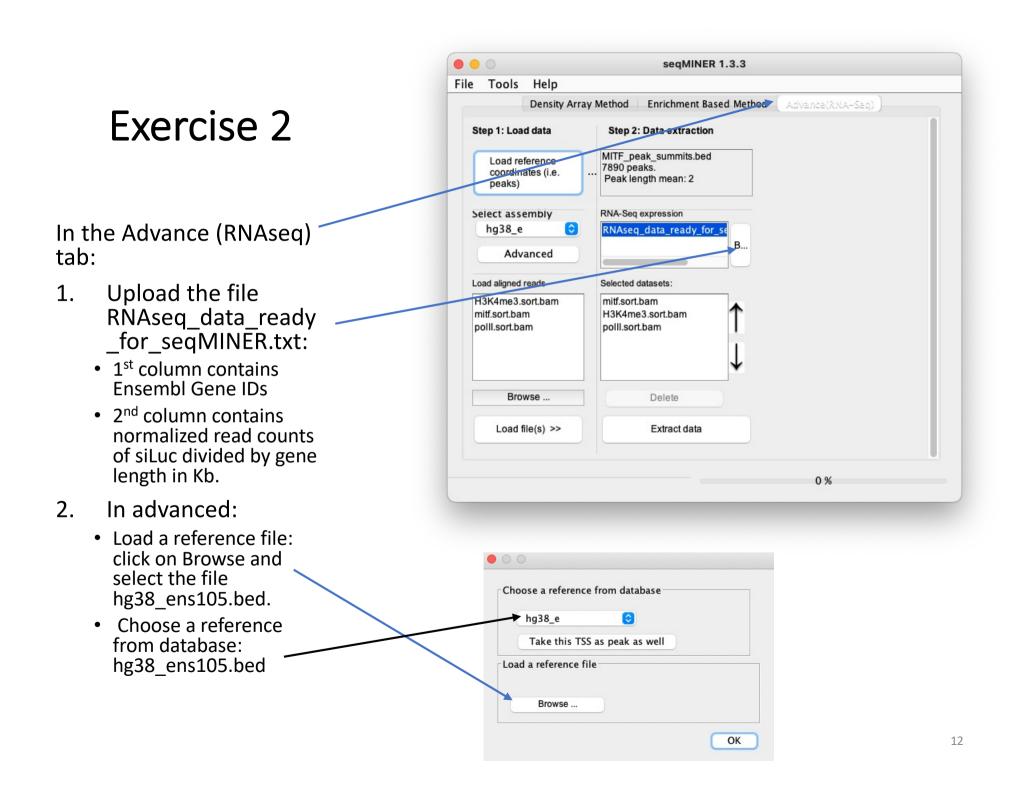
=ROUND(K2/Y2*1000/50;0)

Hint: here we divide values by 50 to get them in the range of the chIP-seq data that we are going to visualize along with them.

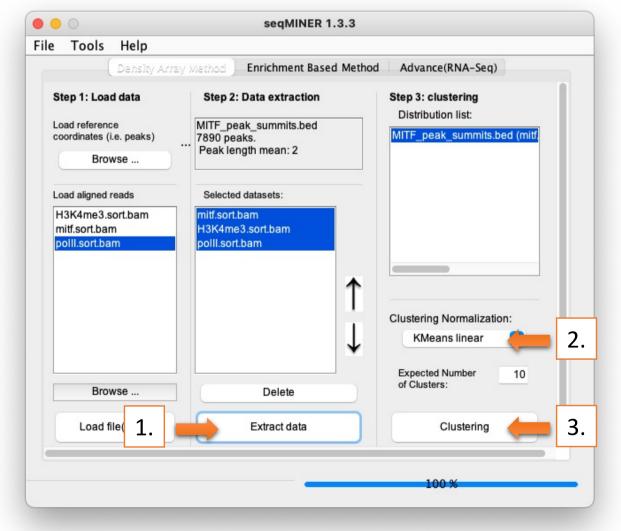
н		I.	J	К	L	м	N	0	Р	Q	R	S	Т	U	v	w	x	Y	Z	AA
norm.s	iMitf3 no	rm.siMitf4	baseMean	siLuc	siMitf	FoldChange	log2FoldCh	ai stat	pvalue	padj	dispGeneE	st dispFit	dispMAP	dispersion	betaConv	maxCooks	GroupBy(Gei r	ound media si	Luc (normaliz	ed and d
	1351	1244	1315.39	1334	1298	0.972	-0.041	-0.46	0.645747741	0.782845085	0.001	0.0034	0.0031	0.0031	TRUE	NA	ENSG000000	1025	26	
	0	0		0 0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ENSG000000	874	0	
	3961	3560	3823.09	3886	3760	0.967	-0.048	-0.706	0.480237104	0.648238622	0.0026	0.0018	0.002	0.002	TRUE	NA	ENSG000000	1262	62	
	670	687	670.09	662	678	1.027	0.038	0.326	0.744638528	0.852952976		0 0.0057	0.005	0.005	TRUE	NA	ENSG000000	2916	5	
	1527	1576	2094.64	2638	1552	0.588	-0.766	-10.233	1.412505274	3.784810984		0 0.0025	0.0022	0.0022	TRUE	NA	ENSG000000	2661	20	
	0	0		0 0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ENSG000000	2021	0	
	251	227	163.36	88	239	2.714	1.44	6.217	5.055611374	4.727784556		0 0.0203	0.018	0.018	TRUE	NA	ENSG000000	1556	1	
	2938	2935	2996.65	3056	2936	0.961	-0.058	-0.892	0.372458906	0.544873736		0 0.0021	0.0017	0.0017	TRUE	NA	ENSG000000	737	83	
	2029	2036	2003.56	1975	2032	1.029	0.042	0.563	0.573226269	0.726619733		0 0.0026	0.0021	0.0021	TRUE	NA	ENSG000000	1406	28	
	1914	1798	1773.66	1691	1856	1.097	0.134	1.689	0.091234250	0.186264839		0 0.0028	0.0025	0.0025	TRUE	NA	ENSG000000	3934	9	
	406	415	392.67	375	410	1.095	0.131	0.893	0.371632444	0.544273796		0 0.009	0.0078	0.0078	TRUE	NA	ENSG000000	792	9	
	1483	1690	1267.32	948	1586	1.675	0.744	7.241	4.459588935	5.521984919	0.0081	0.0035	0.0042	0.0042	TRUE	NA	ENSG000000	1757	11	
	2939	2932	3159.02	3382	2936	0.868	-0.204	-3.207	0.001340209	0.004767185		0 0.002	0.0016	0.0016	TRUE	NA	ENSG000000	3441	20	
	68	50	44.35	30	59	2.01	1.007	2.337	0.019435172	0.050444348		0 0.0721	0.0637	0.0637	TRUE	NA	ENSG00000C	4644	0	
	siN	litfvssiLu	c.complete	e.wTranscr	+															
																			<u> </u>	100 %

In Excel (or an equivalent), create a new file with the following columns **without headers**:


- Id (contains ENSEMBL IDs)
- siLuc (normalized and divided by median of transcripts length in kb)
 Hint: copy and paste normalized data with a special paste by value so
 that it doesn't copy the formula


Save the file as a Text (separator: tabs) (.txt) file named RNAseq_data_ready_for_seqMINER.txt

А	В	С
ENSG000000	26	
ENSG00000	0	
ENSG00000	62	
ENSG00000	5	
ENSG00000	20	
ENSG00000	0	
ENSG00000	1	


Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data

- Load MITF_peak_summits.bed (from your history "ChIPseq data analysis") as reference coordinates.
- Load the 3 bam files (directory chipseq/mapping):
 - mitf.sort.bam
 - H3K4me3.sort.bam
 - polll.sort.bam

Be careful, make sure that in Options > Gene profile, Gene profile analysis is not selected before clicking on « **Extract data** ».

•••			Clusters Heatmap	
mitf.sort.bam	H3K4me3.sort	polii.sort.bam	KMeans seed 3723520 Save heat Color palett Contrast 20 Cluster 1: 127 elements Cluster 2: 218 elements Cluster 3: 1158 elements Cluster 3: 1158 elements Cluster 4: 3502 elements Cluster 5: 404 elements Cluster 6: 387 elements Cluster 7: 155 elements Cluster 9: 534 elements Cluster 10: 1291 elements Cluster 10: 1291 elements Cluster 10: 1291 elements	te ↑ ↓
			Peaks(BED) Merged dataset profile Mean	
			Export selected clusters Save pro	file