
Céline Keime keime@igbmc.fr

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

Introduction to NGS read mapping

- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

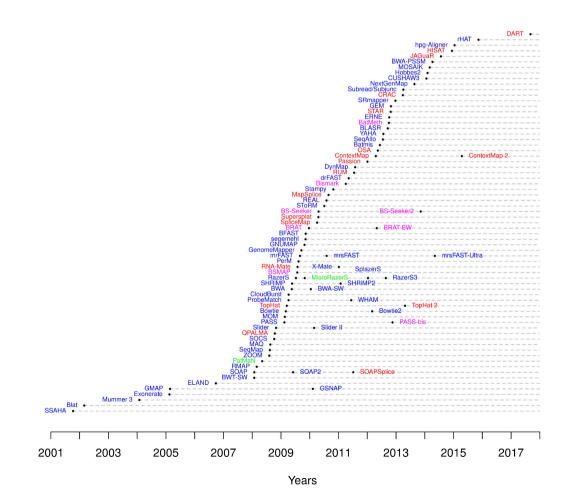
Challenges of short read mapping

- Reference sequence can be large (~3 Gb for human)
- The genome from which reads have been generated may be different from the reference genome
 Need to allow mismatches and indels
- Need to tolerate sequencing errors in reads
- Need to do that for each of the millions of reads !
- ➔ Too long with traditional mappers such as BLAST or BLAT
- ➔ Specialized read mappers with highly efficient algorithms

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

Computational strategies

Indexing


- Like the index at the end of a book
 - ➔ an index of a large DNA sequence allows one to rapidly find shorter sequences embedded within it
- Transforming
 - Uses a technique originally developed for compressing large files called the Burrows-Wheeler transform (BWT)

→ The transformed human genome fits into memory

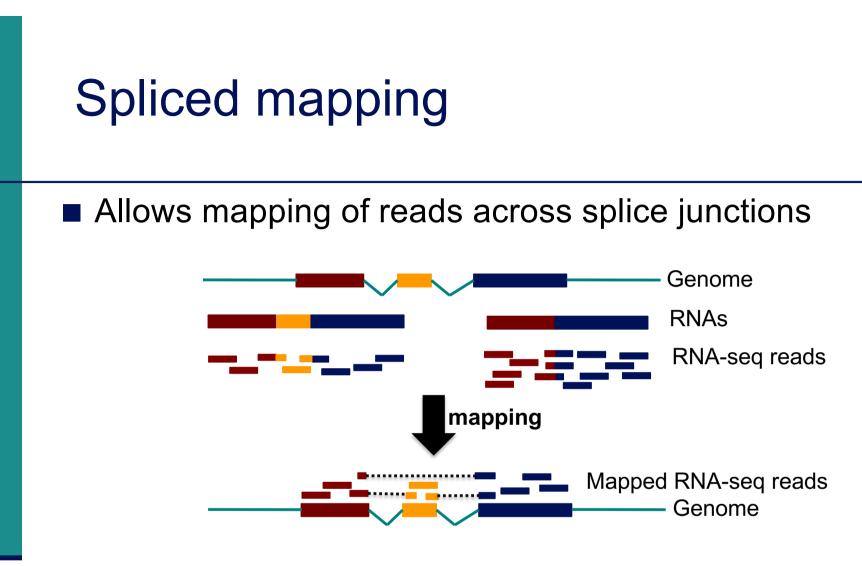
- **Example : Bowtie2** (Langmead et al. Nature Methods 2012)
 - To rapidly narrow the number of possible alignments that must be considered
 - Begins by extracting substrings ("seeds") from each read and its reverse complement
 - Aligning them in an ungapped fashion using an index
 - \rightarrow Trade-off between speed and sensitivity can be adjusted by setting the seed length, the interval between extracted seeds and the number of mismatches in seed
 - Extend seeds to full reads alignment (allowing gaps)

A lot of tools developed ...

More than 90 mapping tools

DNA mappers RNA mappers miRNA mappers bisulfite mappers

http://wwwdev.ebi.ac.uk/fg/hts_mappers/


How to choose a mapper ?

- Main criteria to take into account
 - Sensitivity
 - Ability to align a large fraction of reads with errors and variants
 - Accuracy
 - If an aligner aligns a large fraction of reads, but most alignments are wrong, this is useless !
 - Type of data (DNA, RNA), support of paired-end
 - Read length limits
 - Quality aware
 - Multi-mapping reporting
 - Speed
 - Memory requirements
- Feature comparison
 - Fonseca et al. Bioinformatics 2012;28 (24): 3169-3177

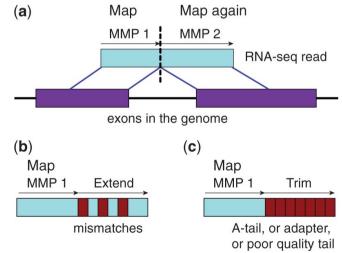
- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

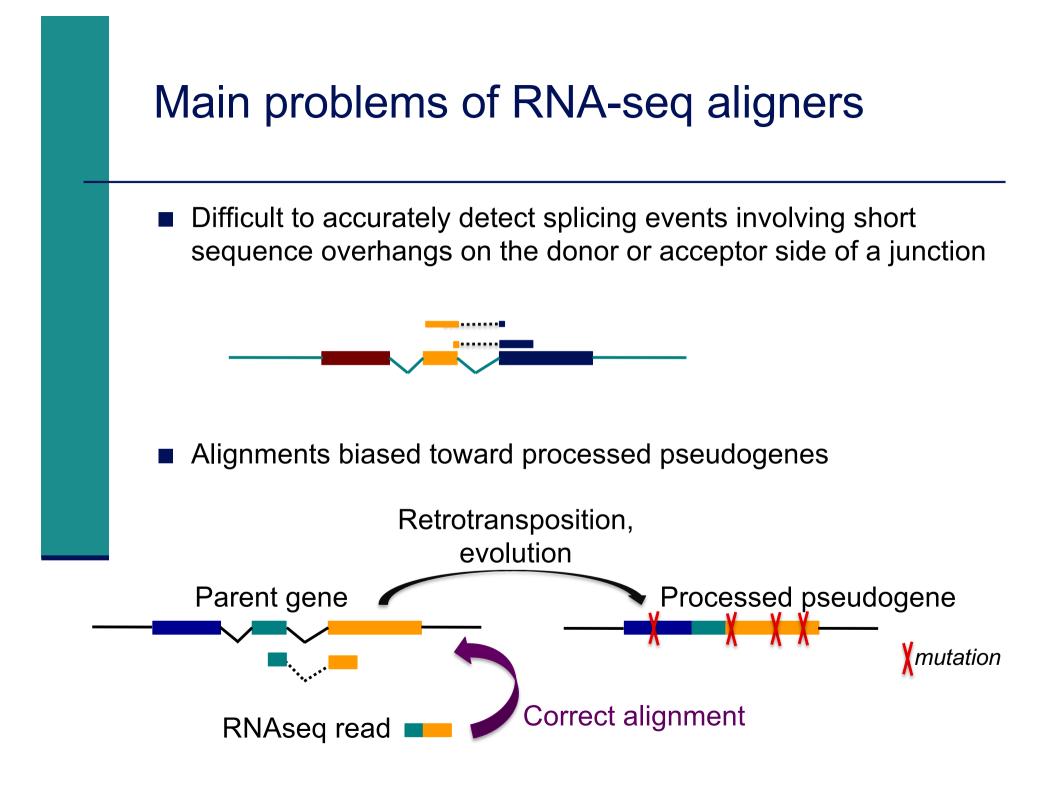
Specificity of RNA-seq reads

→ In an RNA-seq library, several reads span exon junctions

Spliced alignment programs comparison

- Engström et al. Nature Methods 2013
- Baruzzo et al. Nature methods 2017


STAR Spliced Transcripts Alignment to a Reference


1. Searching for seeds

- For every read : searches for the longest sequence that exactly matches one or more locations on the reference genome : Maximal Mappable Prefix (MMP)
 → MMP1 (seed 1)
- Searches for only the unmapped portion of the read to find the next longest sequence that exactly matches the reference genome → MMP2
- MMP search enables finding mismatches or tails :
 - If MMP search does not reach the end of a read (a)
 - → MMPs serve as anchors in the genome that can be extended
 - → If the extended alignment is not good : tail is soft-clipped

2. Stitching all seeds

 \rightarrow alignment of the entire read sequence

Use of annotations in spliced mapping

- Use splice junctions annotations to mitigate this problem
- STAR
 - Option to provide annotations
 - Incorporates annotated junction sequences into the suffix array
 - Searches the seeds that cross the junctions simultaneously with the seeds that map contiguously to the genome

Genome annotations

- Ensembl project (www.ensembl.org)
 - Goal : automatically annotate genomes, integrate this annotation with other available biological data and make all this publicly available
 - Includes manual curation (by HAVANA) for some species : human, mouse, zebrafish, rat
 - Ensembl data is released on an approximately three-month cycle
- Ensembl genome annotations available on
 - ftp://ftp.ensembl.org/pub/
 - Important to use the same annotation version throughout a project, access to old versions via <u>View in archive site</u>
- The main Ensembl site focuses on vertebrate genomes and some other representative species (http://www.ensembl.org/info/about/species.html), other sites are dedicated to plants, fungi, bacteria (cf "Our sister sites" links at the bottom of www.ensembl.org)
- Other annotation sources
 - e.g., ordered from most to least complex : AceView, Ensembl, UCSC, Refseq Genes (Wu et al. BMC Bioinformatics 2013 ;14 Suppl 11:S8)

Genome annotations

- Generally provided in a GTF (Gene Transfert Format) / GFF (General Feature Format) file
- GTF file :
 - Tab-delimited text file format
 - Each line correspond to an annotation or feature
 - Specifications :
 - http://www.ensembl.org/info/website/upload/gff.html
 - e.g. human Ensembl 105 GTF file
 - ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.chr.gtf.gz
 - Caution : use annotations corresponding to the version of genome assembly you are working on
 - **GRCh38 (1 22, X, Y, MT)** / hg38 (chr1 chr22, chrX, chrY, chrM)

Genome annotations

- Generally provided in a GTF (Gene Transfert Format) file
 - Nine columns :

Seqid	Source	Туре	Start	End	Score	Strand	Phase	Attributes
Z	ensembl_havana	gene	227813842	227817564		+		
2	havana	transcript	227813842	227817564		+		I I
2	havana	exon	227813842	227813987		+		/
2	havana	CDS	227813912	227813987		+	0	
2	havana	start_codon	227813912	227813914		+	0	i
2	havana	exon	227815457	227815568		+	•	Î I
2	havana	CDS	227815457	227815568		+	2	/ !
							i	, ,
							į	
							1	

gene_id "ENSG00000115009"; gene_version "11"; transcript_id "ENST00000409189"; transcript_version "7"; exon_number "1"; gene_name "CCL20"; gene_source "ensembl_havana"; gene_biotype "protein_coding"; havana_gene "OTTHUMG00000133189"; havana_gene_version "3"; transcript_name "CCL20-001"; transcript_source "havana"; transcript_biotype "protein_coding"; ...

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

Exercise 1 Mapping of RNA-seq data using Galaxy

- Map 1 million reads from siLuc2 mRNA-seq sample using STAR
 - 1. Copy to your history
 - The corresponding FASTQ file : 2: siLuc2_1000000.fastq.gz
 - The GTF annotation file :

3: Homo_sapiens.GRCh38.105.chr.gtf.gz

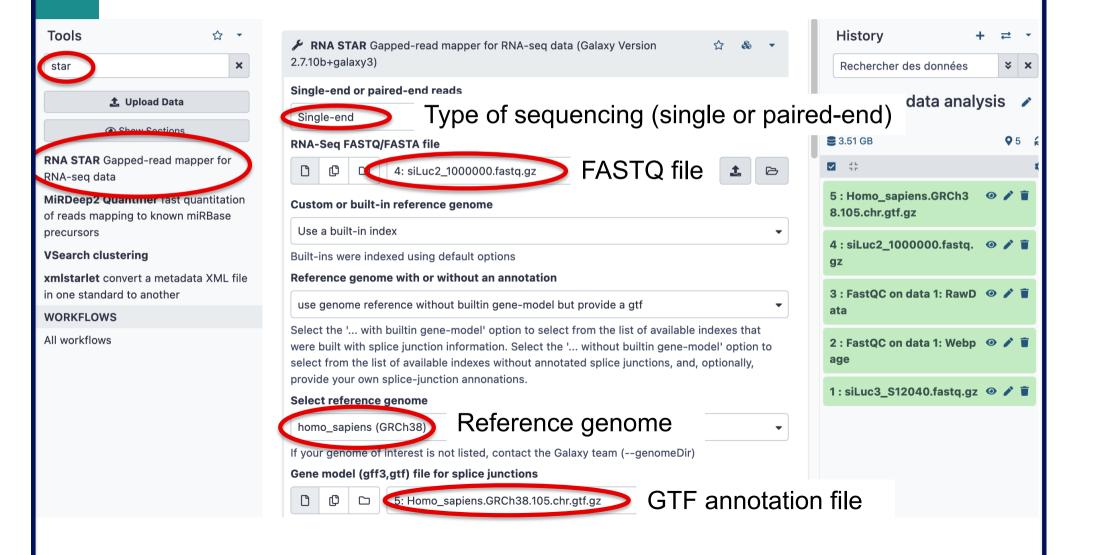
- 2. Launch STAR on this FASTQ file using
 - homo_sapiens (GRCh38) reference genome
 - Homo_sapiens.GRCh38.105.chr.gtf.gz GTF annotation file

	Exercise 1 1. Copy files to your history Click on "View all histories"						
Click on "V							
Galaxy France work:	flow Visualize Shared Data - Help - User - 🞓 单	Using 51%					
Tools ☆ ≔		History 2 +					
search tools		search datasets View all histories					
1 Upload Data		RNA-seq data analysis					
Get Data		3 shown					
Send Data		1.96 GB					
Collection Operations							
GENERAL TEXT TOOLS USegalaxy.fr							
Text Manipulation							
Filter and Sort	By using this Galaxy instance, we assume						
Join, Subtract and Group							

Exercise 1 1. Copy files to your history

Drag datasets 2 and 3

- from "NGS data analysis training Strasbourg" history
- to "RNA-seq data analysis" history



Exercise 1 1. Copy files to your history

You have now in your history all files needed to launch STAR :

Galaxy	/ France							
search histories								
Current History								
RNA-seq da	ta analysis							
5 shown		L						
3.27 GB		l						
search datas	sets ? 🙁							
5: Homo_sapi 05.chr.gtf.gz	ens.GRCh38.1 💿 🖋 🗙							
05.chr.gtf.gz	ens.GRCh38.1 ③ 🖋 X 0000.fastq.gz ④ 🖋 X							
05.chr.gtf.gz 4: siLuc2_100								
05.chr.gtf.gz 4: siLuc2_100 3: FastQC on c a	0000.fastq.gz 💿 🔗 🗴							

Exercise 1 2. Launch STAR

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

- Sequence Alignment/Map format \rightarrow standard alignment format
- Text file containing all information about an alignment
- SAM format specifications
 - Li et al., Bioinformatics 2009;25(16):2078-9.
 - http://samtools.github.io/hts-specs/SAMv1.pdf
 - Header section

. . .

- Generic information regarding the SAM file, not required
- Each line starts with @ and is tab-delimited
- @HD : SAM file version, whether the file is sorted
- @SQ : Name + length of reference sequences used for alignment
 - Header section example : @HD VN:1.4 SO:coordinate @SQ SN:1 LN:248956422 @SQ SN:10 LN:133797422 @SQ SN:11 LN:135086622

@SO SN:12 LN:133275309

- Alignment section : 11 mandatory fields + optional fields
- Mandatory fields :

Col	Field	Туре	N/A Value	Description				
1	QNAME	string	mandatory	The query/read name.				
2	FLAG	int	mandatory	The record's flag.				
3	RNAME	string	*	The reference name.				
4	POS	32-bit int	0	1-based position on the reference.				
5	MAPQ	8-bit int	255	The mapping quality.				
6	CIGAR	string	*	The CIGAR string of the alignment.				
7	RNEXT	string	*	The reference of the next mate/segment.				
8	PNEXT	string	0	The position of the next mate/seqgment.				
9	TLEN	string	0	The observed length of the template.				
10	SEQ	string	*	The query/read sequence.				
11	QUAL	string	*	The ASCII PHRED-encoded base qualities.				

Alignment section example :

HWI-ST1136:225:HS140:8:1313:4696:85038	256 1 1440	6 0 1S49M	* 0	0 0 GTCTGCTCAGTTCTTTATTGATTGGTGTGCCGTTTTCTCTGGAAGCCTCT
CCCFFFFFHHHHHJJJJJJJJJJJHIHIIJJIJJJJJJ	נננננננונוננ	NH:i:8 HI:i:5	AS:i:48	48 nM:i:0
HWI-ST1136:225:HS140:8:2308:6999:65454	0 1 1445	3150M*	00	0 CTTAAGAACACAGTGGCGCAGGCTGGGTGGAGCCGTCCCCCCATGGAGCA
@@@DDBFFGHHDFADFABBGGAHGDBB??00?DDB?FHH	IIE=BD;;@>?	NH:i:3 HI:i:1	AS:i:49	49 nM:i:0
HWI-ST1136:225:HS140:8:2109:9064:22156	0 1 1446	7050M*	0 0	0 GGCGCAGGCTGGGTGGAGCCGTCCCCCCATGGAGCACAGGCAGACAGA

■ Flag (number)

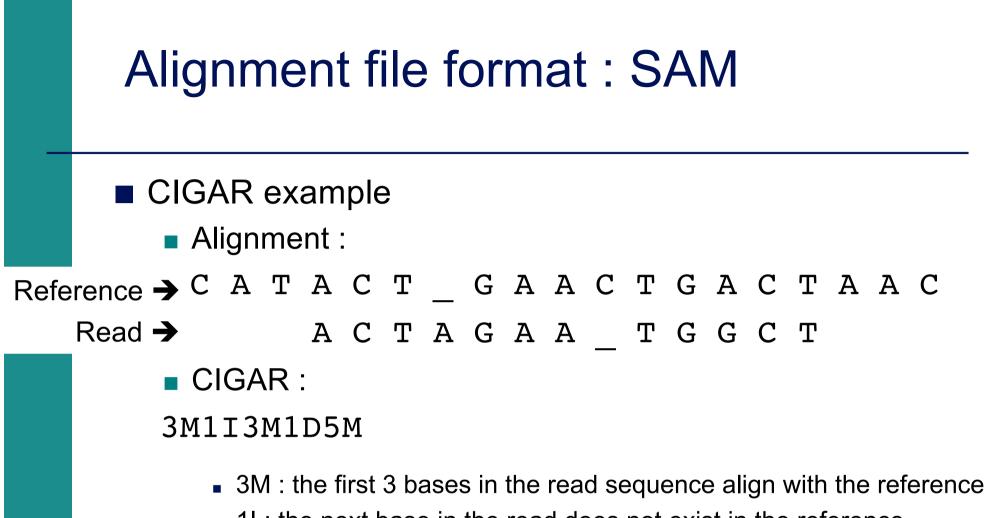
Describes the alignment

e.g. reverse strand, not primary alignment, unmapped

Explain SAM flags in plain English :

https://broadinstitute.github.io/picard/explain-flags.html

Mapping quality (number)


Indicates whether the read is correctly mapped to this location in the reference genome

- STAR mapping quality
 - 60 by default on Galaxy for uniquely mapped reads
 - $int(-10*log_{10}(1-1/N_{map}))$ for multi-mapping reads N_{map} : the number of loci a read maps to

N _{map}	MAPQ
2	3
3-4	1
≥5	0

CIGAR (string)

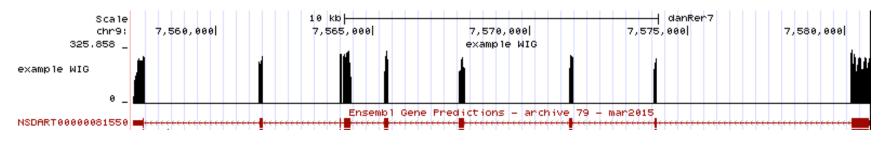
- M : alignment (can be a sequence match or mismatch)
- I : insertion to the reference
- D: deletion from the reference
- N : skipped region from the reference
- S : soft clipping (clipped sequences present in SEQ)
 - Bases of the read that are not aligned
- H : hard clipping (clipped sequences not present in SEQ)
 - Bases of the read that are not aligned and that have been removed from the read sequence in the SAM file

- II: the next base in the read does not exist in the reference
- 3M : then 3 bases align with the reference
- 1D : the next reference base does not exist in the read sequence
- 5M : then 5 more bases align with the reference
 - Note that among these bases one is different from the reference but it still counts as an M since it aligns to that position

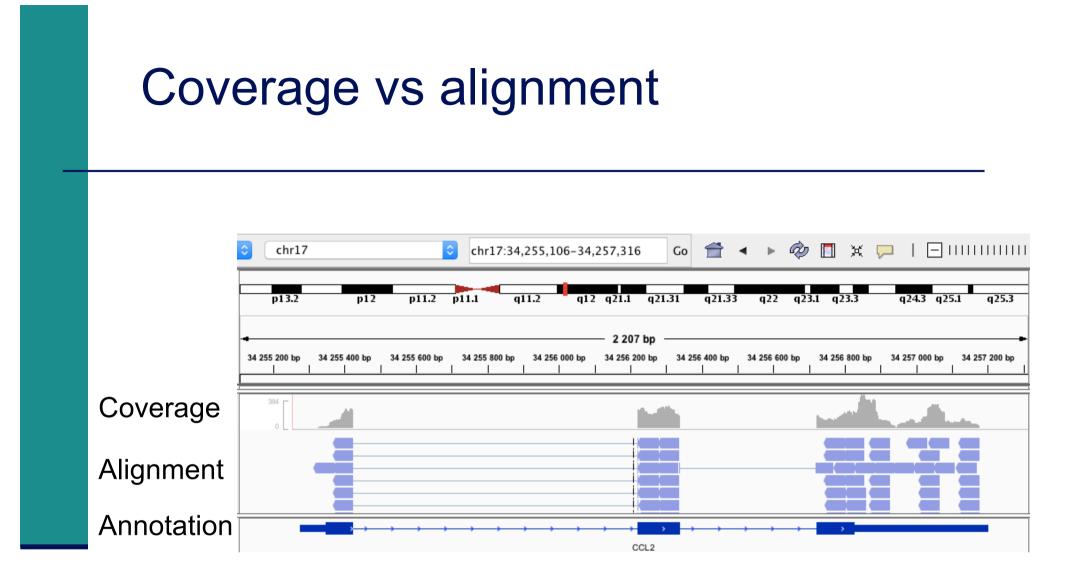
Additional tags (format tag:type:value)

Tag^4	Type	Description					
X?	?	Reserved fields for end users (together with Y? and Z?)					
AM	i	The smallest template-independent mapping quality of segments in the rest					
AS	i	Alignment score generated by aligner					
BC	\mathbf{Z}	Barcode sequence, with any quality scores stored in the QT tag.					
BQ	\mathbf{Z}	Offset to base alignment quality (BAQ), of the same length as the read sequence. At the <i>i</i> -th read base, $BAQ_i = Q_i - (BQ_i - 64)$ where Q_i is the <i>i</i> -th base quality.					
CC	Z	Reference name of the next hit; '=' for the same chromosome					
CM	i	Edit distance between the color sequence and the color reference (see also NM)					
CD	z	Free-text comments					
CP	i	Leftmost coordinate of the next hit					
CQ	z	Color read quality on the original strand of the read. Same encoding as QUAL; same length as CS.					
CS	\mathbf{Z}	Color read sequence on the original strand of the read. The primer base must be included.					
CT	\mathbf{Z}	Complete read annotation tag, used for consensus annotation dummy features ⁵ .					
E2	\mathbf{Z}	The 2nd most likely base calls. Same encoding and same length as QUAL.					
FI	i	The index of segment in the template.					
FS	\mathbf{Z}	Segment suffix.					
FZ	$^{\mathrm{B,S}}$	Flow signal intensities on the original strand of the read, stored as (uint16_t) round(value * 100.0).					
LB	\mathbf{Z}	Library. Value to be consistent with the header RG-LB tag if QRG is present.					
HO	i	Number of perfect hits					
H1	i	Number of 1-difference hits (see also NM)					
H2	i	Number of 2-difference hits					
HI	i	Query hit index, indicating the alignment record is the i-th one stored in SAM					
IH	i	Number of stored alignments in SAM that contains the query in the current record					
MC	\mathbf{Z}	CIGAR string for mate/next segment					
MD	\mathbf{Z}	String for mismatching positions. Regex: $[0-9]+(([A-Z] ^[A-Z]+) [0-9]+)*^6$					
MQ	i	Mapping quality of the mate/next segment					
NH	i	Number of reported alignments that contains the query in the current record					
NM	i	Edit distance to the reference, including ambiguous bases but excluding clipping					

- Binary file
- Compressed version of SAM format
- BAM files can be sorted and indexed
 - Makes accessing data very fast
- BAI (extension .bai) : index for a BAM file
 - sample.bam.bai index for sample.bam file

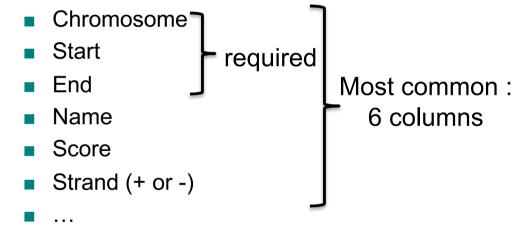

Utilities to manipulate SAM/BAM files

- Samtools (http://www.htslib.org/)
 - Various utilities for manipulating alignment in SAM format (SAM <> BAM conversion, calculating statistics on alignments, ...) – available on Galaxy
- Igvtools (http://software.broadinstitute.org/software/igv/)
 - sort, index, ...
 - Integrative Genomics Viewer
 - → Tools menu
 - \rightarrow run igvtools


			igvtools			
Command Count					0	
nput File					Browse	
Output File						
Genome hg38					Browse	
TDF and Count optic	ons					
Zoom Levels	7 ᅌ					
Window Functions	🗌 Min	Max	🗹 Mean	Median		
	2%	10%	90%	98%		
Probe to Loci Mappin	g				Browse	
Window Size	25					
Extension Factor						
Count as Pairs						
Sort Options						
Temp Directory					Browse	
Max Records 5000	000					
		Close	Run			
Messages						

Wiggle (WIG) file format

- Tab-delimited text file
- For dense continuous data
 - e.g. coverage : "summary" generated from an alignment
 - \rightarrow only density information
- Each line represents a portion of a chromosome
- Columns :
 - Chromosome
 - Start
 - End
 - Value
- More precise definition and examples
 - http://genome.ucsc.edu/goldenPath/help/wiggle.html
- Compressed binary indexed file derived from a WIG file : bigWig

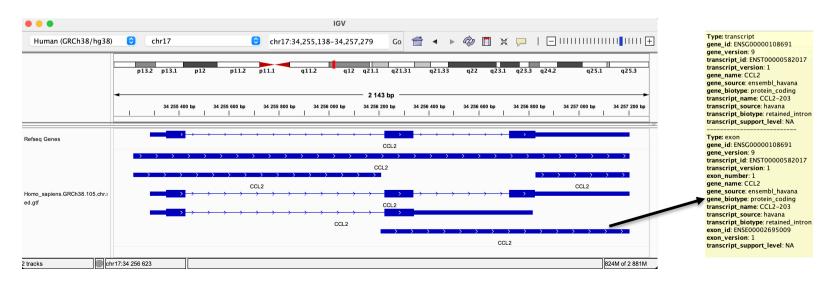


	ТС	DF fil	e for	mat					
	Tiled data file								
	∎ B	inary file	9						
		•	int densi	itv					
				data for faste	ar dienle	עב			
		•			•	•			
				•			√ file using igvtools		
		IGV I		$u \rightarrow run igvto$	$ools \rightarrow$	Co	bunt		
Command Count			igvtools		0				
	ime/Desktop/NC	S_data_analysis_traini	ng/alignment/siLuc2_r	napped.bam.bam	Brows	se			
Output File /Users/ke	ime/Desktop/NC	S_data_analysis_traini	ng/alignment/siLuc2_r	napped.bam.bam.tdf	Brows	se			
Genome hg38					Human (hg38)		chr4 chr4:15,958,524-15,964,999 Go		
TDF and Count optio Zoom Levels	7 🜔						p16.1 p15.2 p14 p11 q13.1 q21.1 q22.2 q25 q27 q28.3 q31.23 q32.3 q35.1		
Window Functions	Min 2%	Max 10%	Absolute Max	✓ Mean Median 98%					
Probe to Loci Mappin	g						15 959 000 bp 15 960 000 bp 15 961 000 bp 15 962 000 bp 15 963 000 bp 15 964 000 bp 15 965 		
Window Size	25				siLuc2_alignment.bam.t	tdf	12,598		
Extension Factor Count as Pairs					siLuc3_alignment.bam.t	tdf			
Sort Options	Sort Options				siMitf3_alignment.bam.t	tdf			
Temp Directory	Temp Directory								
Max Records 5000	000				siMitf4_alignment.bam.t	101			
	Close Run				Gene		FGFBP2		

Browser Extensible Data (BED) format

- Tab-delimited text file
- For genomic intervals
- From 3 to 12 columns (always in this order) :

- More precise definition and examples
 - http://genome.ucsc.edu/FAQ/FAQformat.html#format1
- Manipulation of BED files
 - BEDTools (different tools available on Galaxy) : https://bedtools.readthedocs.io


 Chr1 (qA1)
 1 qA1
 1 qA2
 1 qA5
 1 qB
 1 qC2
 1 qC2
 1 qC5
 1 qC5
 1 qE2.1
 1 qE2.3
 E3
 1 qE4
 1 qF
 1 qG1
 1 qG1
 1 qH5
 <th1 qH5</th>

Gene Transfert Format (GTF)

GTF files can be visualized using IGV

 e.g. Ensembl 105 annotations downloaded from http://ftp.ensembl.org/pub/release-105/gtf/homo_sapiens/Homo_sapiens.GRCh38.105.chr.gtf.gz

- Sort (by start position) and index for faster display
 - Tools \rightarrow Run igvtools \rightarrow Sort
 - → Homo_sapiens.GRCh38.105.chr.sorted.gtf
 - Tools \rightarrow Run igvtools \rightarrow Index
 - → Homo_sapiens.GRCh38.105.chr.sorted.gtf.idx (in the same directory)
 - File → Load from file and choose Homo_sapiens.GRCh38.105.chr.sorted.gtf

Main NGS file formats : summary

FASTQ

Raw data

SAM / BAM

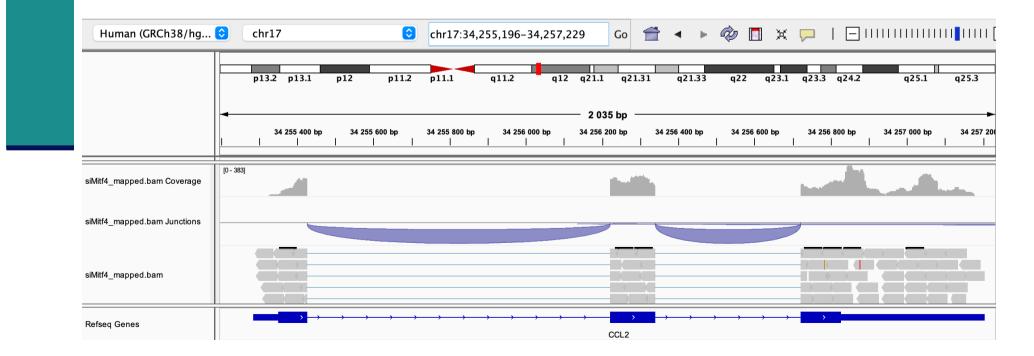
alignment

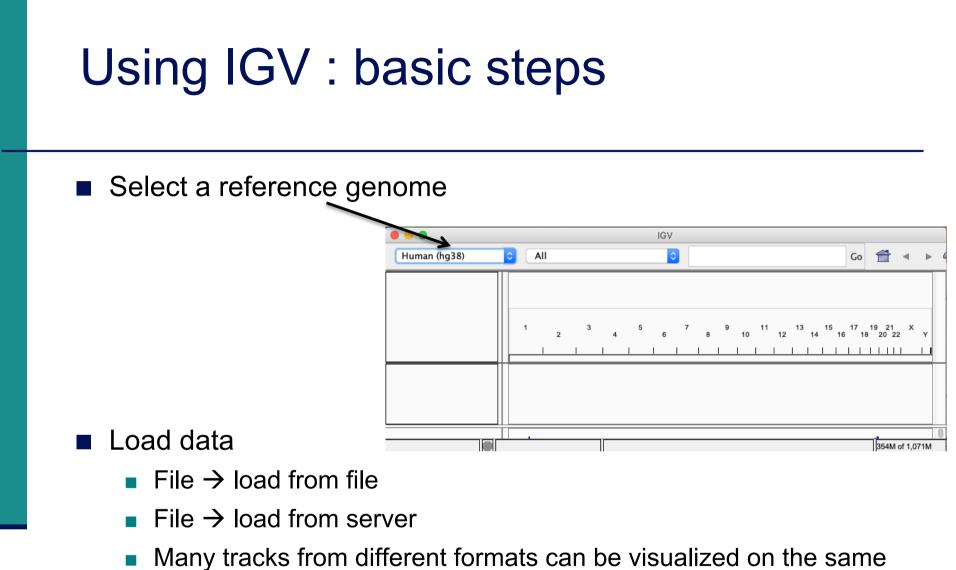
WIG / bigWig / TDF
coverage

BED

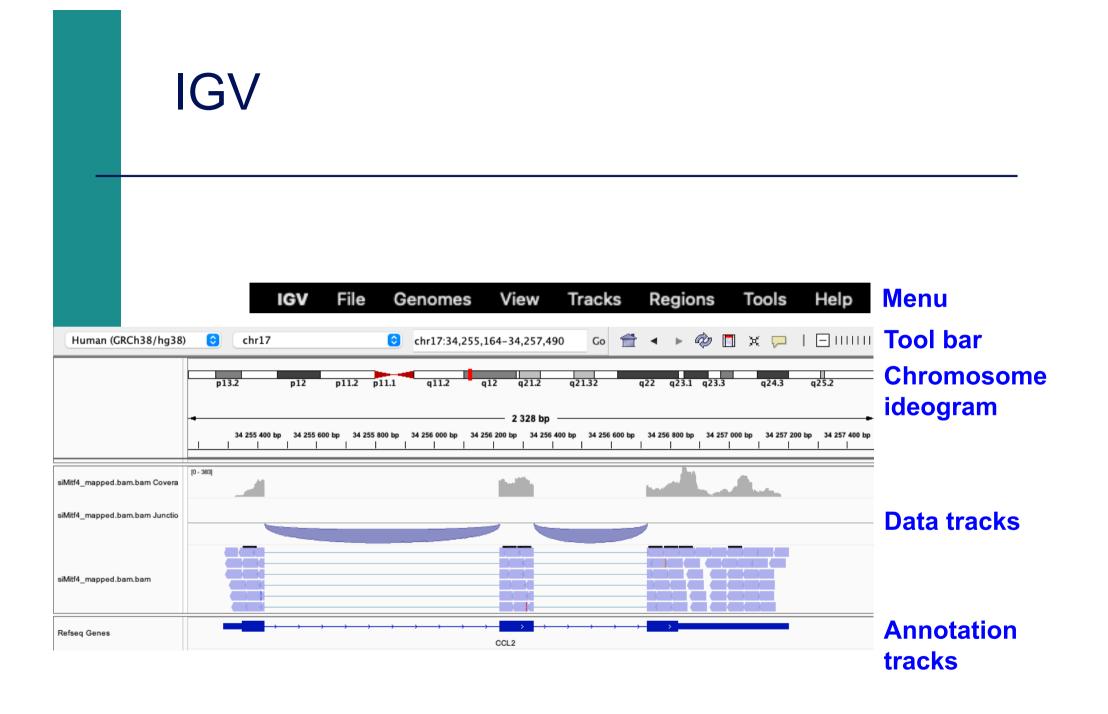
Genomic intervals

annotations


text binary


NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

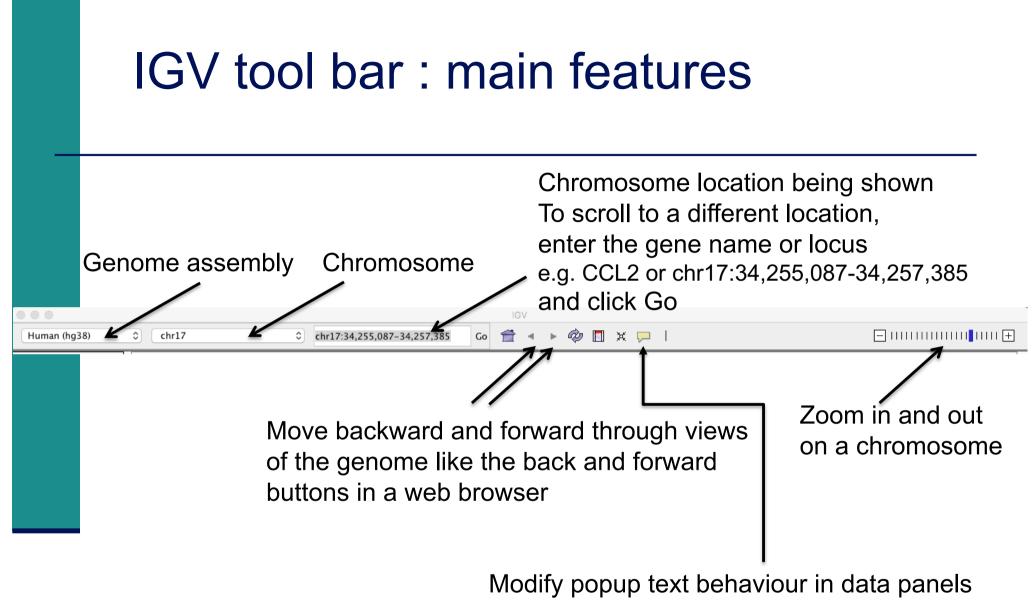

Alignment visualization

- Using a Genome Browser
 - A lot of available genome browsers
 - Ensembl, UCSC, Jbrowse, IGB, IGV, …
 - During this training we will use Integrative Genomics Viewer
 - http://www.broadinstitute.org/igv/

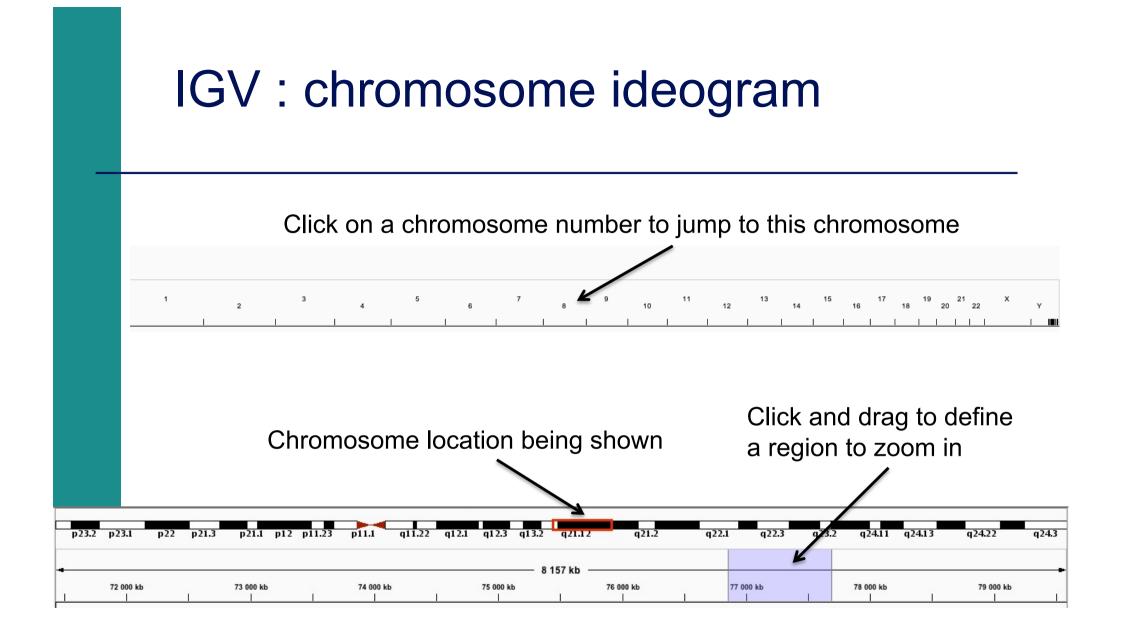
- window (but they must correspond to the same assembly !)
- Navigate through the data

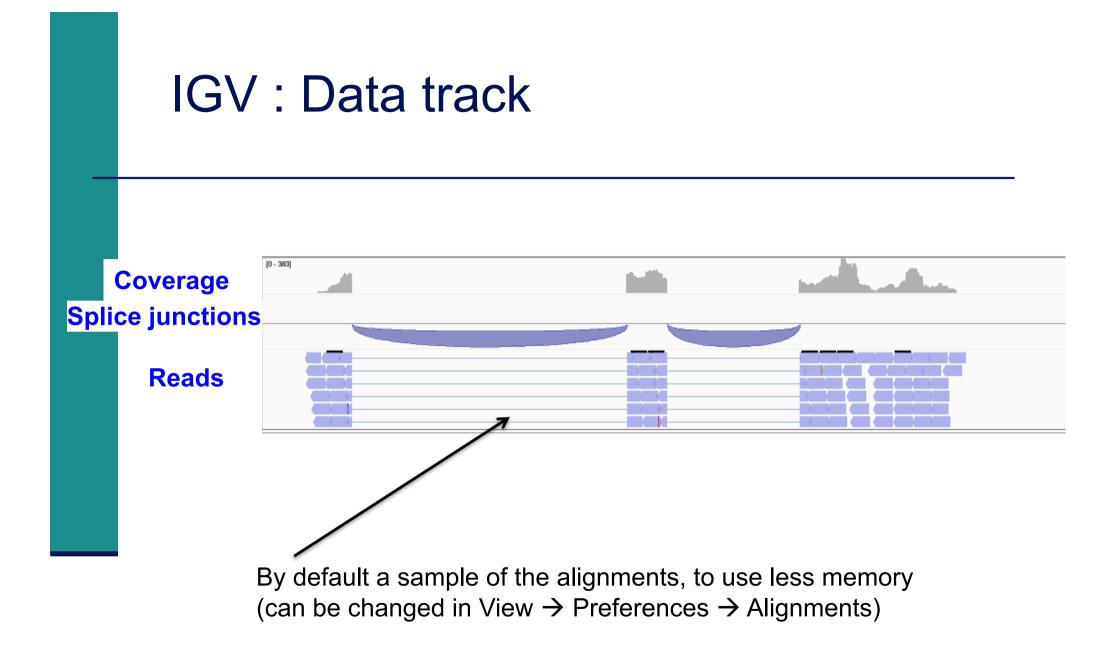
IGV menu : main features

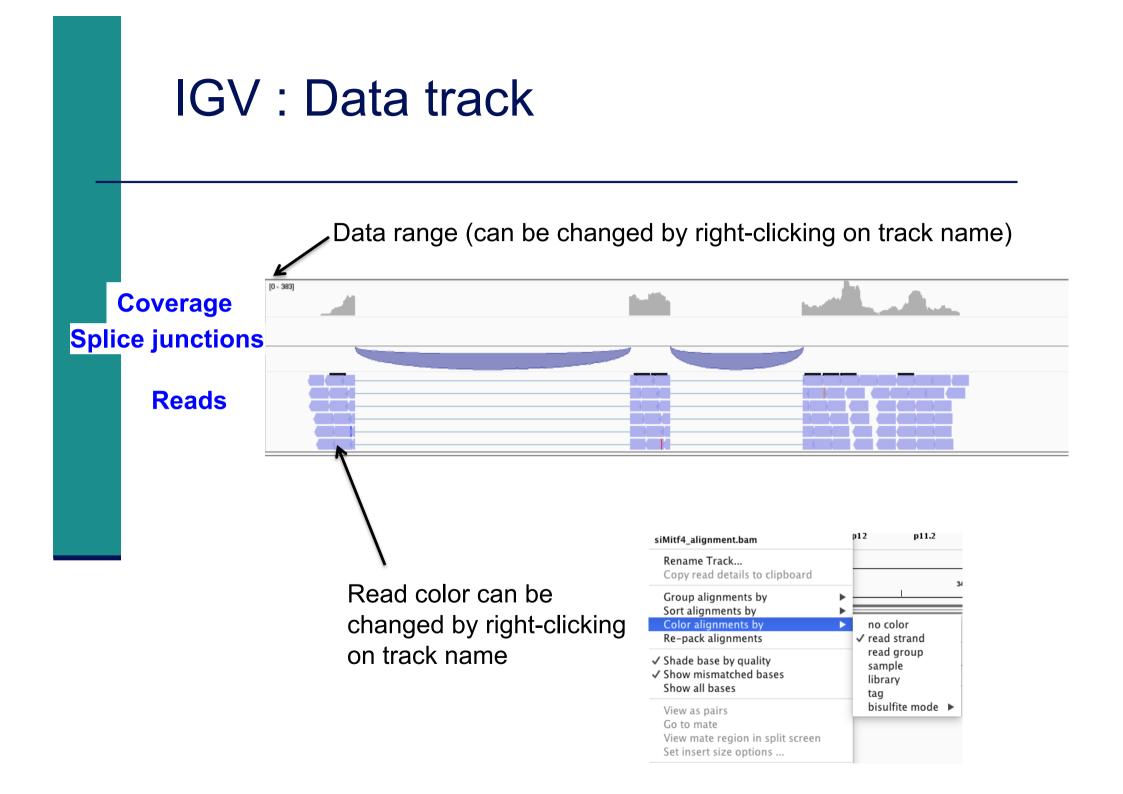
File

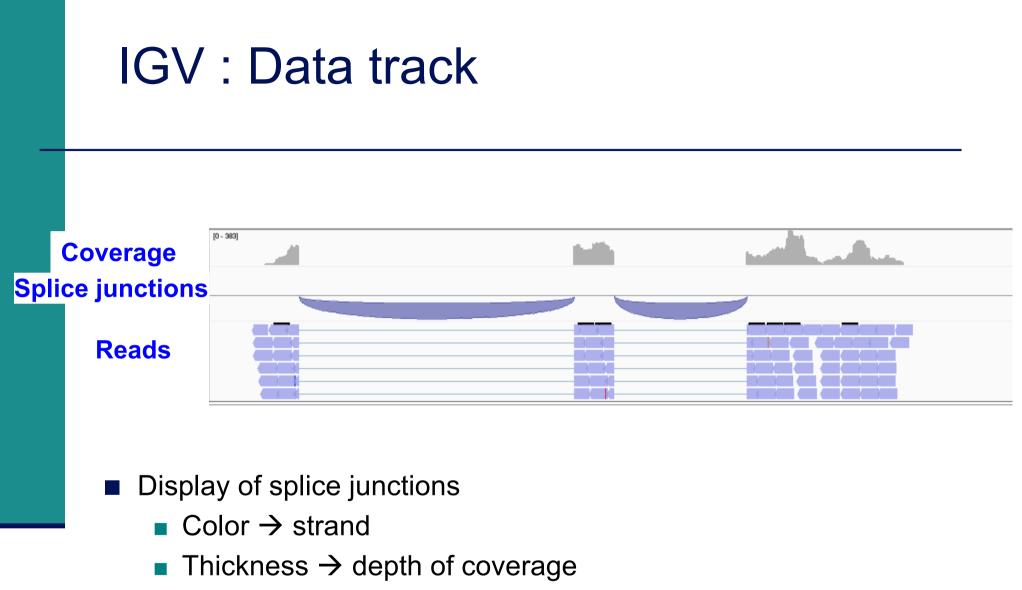

- Load files into IGV
- Manage sessions (e.g. save your current settings to a named session file)
- Save an image

Genome

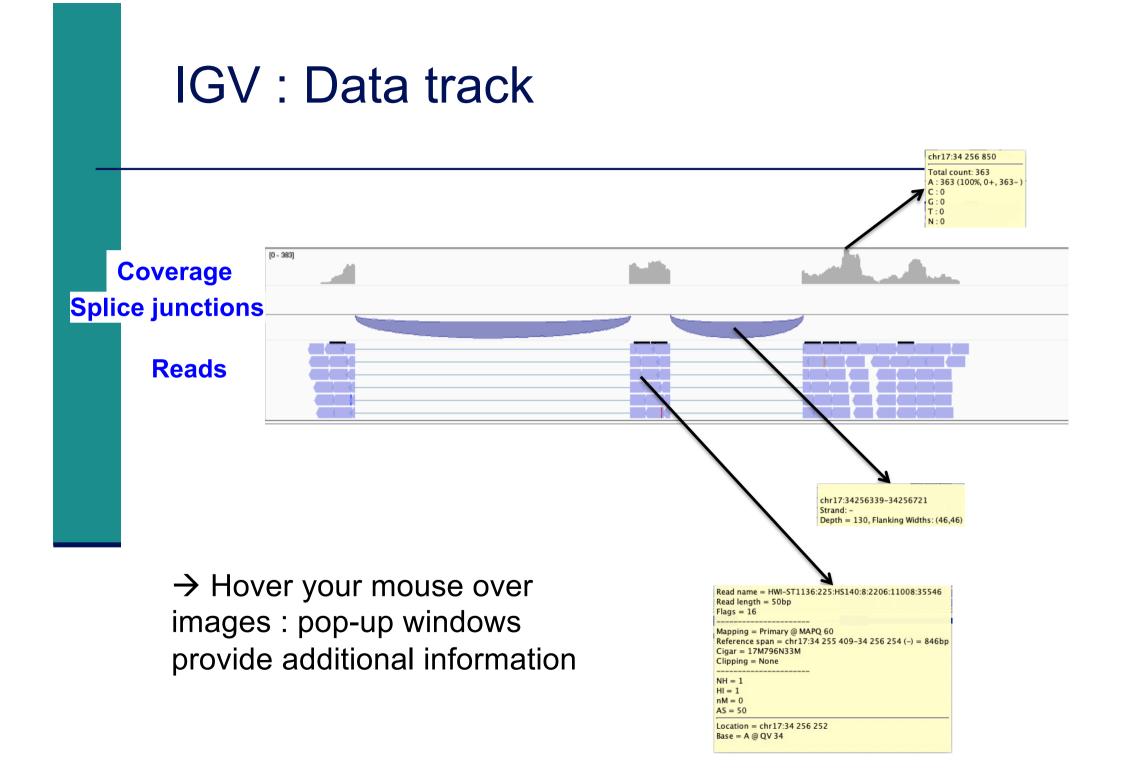

- Manage genomes available on IGV data server (http://software.broadinstitute.org/software/igv/Genomes)
- Create new genomes (required : FASTA file, optional : annotation file, ...)

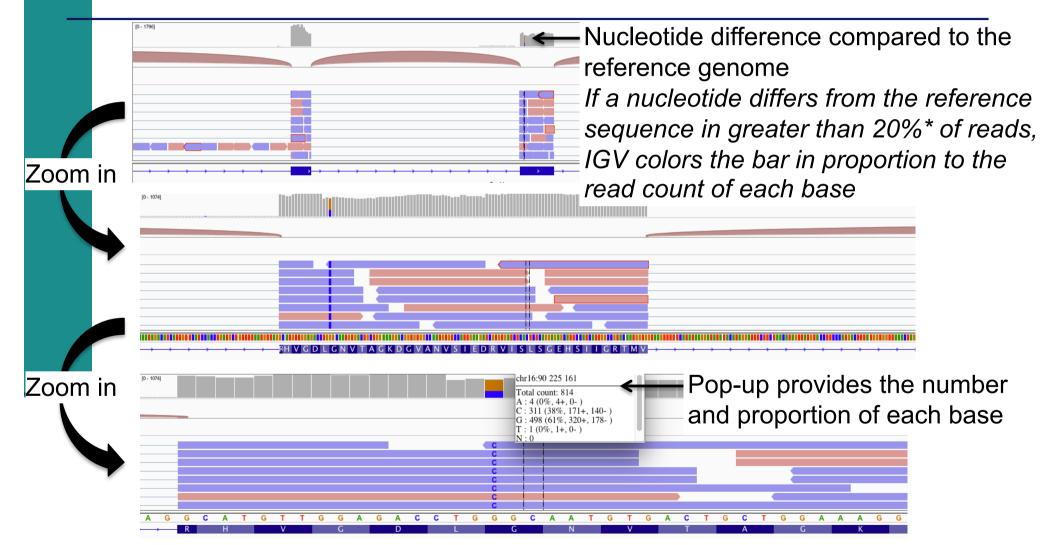

View


- Preferences : customize the display
- Tools
 - Run igvtools : count (\rightarrow tdf), sort, index

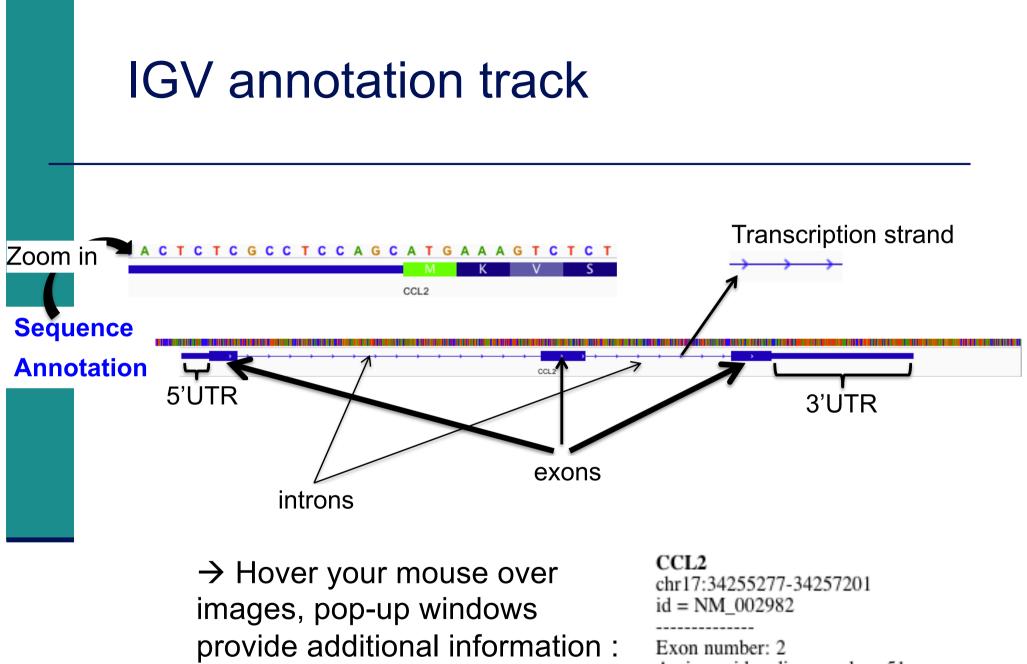


- Show details on hover
- Show details on click

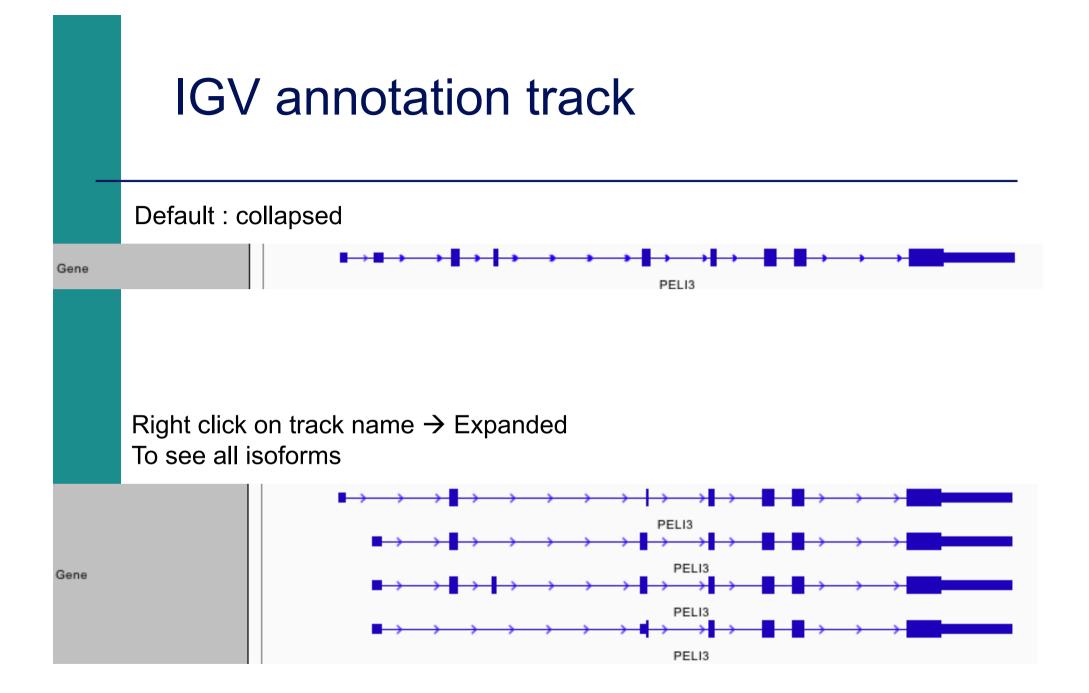




All junctions with more than 50 reads have the same thickness

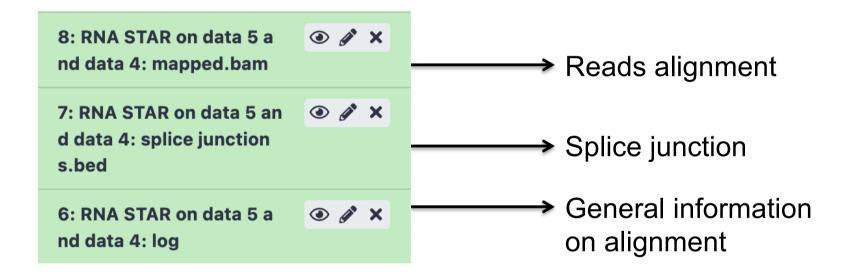


IGV data track differences vs reference genome



* Default threshold, can be changed in

View \rightarrow Preferences \rightarrow Alignment \rightarrow Coverage allele-fraction threshold


Amino acid coding number: 51 chr17:34256222-34256339

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

Exercise 1 : results

Exercise 1 : interpretation of results

1. Log file

• What is the proportion of uniquely mapped reads ?

2. Alignment file

- Which alignment file format is provided by STAR ?
- Download this file and the index, visualize this alignment using IGV
- Look at reads mapped on the junction between the 2 last exons of Park7 gene. How many reads span this junction ? Look at the CIGAR string of one of these reads
- Visualize the strand specificity of the reads, for example on *Park7* and *Chmp2a* genes (color alignments by strand)
- Look at reads aligned on Actb gene (color alignments by number of reported alignments : tag=NH). What do you observe ?

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

- STAR results for all samples from Mitf project are available on Galaxy
 - Datasets 4 to 15:

15: RNA STAR on siMitf4: ma pped.bam	● / ×
14: RNA STAR on siMitf4: spl ice junctions.bed	● / ×
13: RNA STAR on siMitf4: log	● 🖋 ×
12: RNA STAR on siMitf3: ma pped.bam	● / ×
11: RNA STAR on siMitf3: spli ce junctions.bed	● / ×
10: RNA STAR on siMitf3: log	● 🖋 ×
9: RNA STAR on siLuc3: map ped.bam	● / ×
8: RNA STAR on siLuc3: splic e junctions.bed	● # ×
7: RNA STAR on siLuc3: log	● / ×
6: RNA STAR on siLuc2: map ped.bam	● / ×
5: RNA STAR on siLuc2: splic e junctions.bed	● / ×
4: RNA STAR on siLuc2: log	● / ×

- 1. What is the proportion of uniquely mapped reads in all samples ?
- To save time, the corresponding BAM, BAI and tdf files are already available on your computer (RNAseq/alignment folder)
- Start a new IGV session (File \rightarrow new session)
- In View \rightarrow Preferences \rightarrow Tracks tab, select "Normalize coverage data"
- Load the 4 tdf files on IGV
- Right-click on all track names and choose "Group Autoscale"
- 2. We are interested in *Idh1* gene.

Is this gene differentially expressed between siLuc and siMitf samples ?

In IGV preferences (View \rightarrow Preferences) "Alignments" tab

- In "Track Display" section, check "Show junction track"
- In "Splice Junction Track" section, choose "Minimum junction coverage": 10

Open a new session (File \rightarrow New session), then load the 4 BAM files

- 3. What do you observe in exons 11 and 13 of *Eef2* gene?
- 4. What do you observe at position chr4:6707961?
- 5. Which transcript isoforms do you observe in region chr20:44,935,294-44,939,521 ?

Notes :

- To see all annotated isoforms right click on an annotation track and select Expanded
- You can perform a Sashimi-plot for a better visualization of isoforms : Right-click on a BAM track → Sashimi plot
 → Select Alignment Tracks : all alignments

6. The same RNA samples have been processed with a different RNA-seq protocol. The corresponding alignment file for siLuc2 sample is available on your computer :

RNAseq/other_protocol/siLuc2_other_protocol_mapped.bam

What do you think about this protocol?

Look for example at Park7 gene

NGS read mapping

- Introduction to NGS read mapping
- Short read mappers
- Specificity of RNA-seq read mapping
- Exercise 1 : Mapping of RNA-seq data using Galaxy
- Alignment and related file formats
- Alignment visualization
- Exercise 1 : Interpretation of results
- Exercise 2 : Whole dataset alignment visualization
- Quality control of RNA-seq data based on alignments
 Exercise 3 : QC on alignments

Quality control of RNA-seq data based on alignments

- Proportion of mapped, uniquely and multiple mapped reads in all samples within a project
- Read distribution relative to known annotations
- Read coverage over genes
- Strand information (directional protocol)
- For paired-end sequencing : distance between reads

http://rseqc.sourceforge.net/

RSeQC tools available on Galaxy

RSeQC input : alignment (BAM/SAM) and annotation (BED) files

Read distribution relative to known annotations

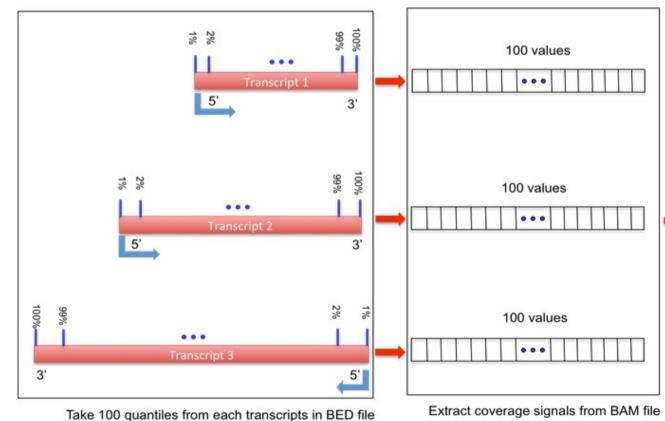
- How mapped reads are distributed over genomic features (CDS, UTR, intron, intergenic regions)
- RSeQC read distribution
 - Assigns mapped reads to a genomic feature
 - When genomic features overlap, they are prioritized as:
 - CDS > UTR > Introns > Intergenic regions
 - Does not assign reads located beyond TSS upstream 10Kb or TES downstream 10Kb

CDS : Coding DNA Sequence UTR : UnTranslated Region TSS : Transcription Start Site TES : Transcription End Site

- 1. Convert GTF annotation file to BED file using Convert GTF to BED12 tool
 - Annotation file to use (already imported) Homo_sapiens.GRCh38.105.chr.gtf.gz
- 2. Launch **Read distribution** on the mapping results from siLuc2 sample
 - Alignment file to import
 - 6: RNA STAR on siLuc2: mapped.bam
 - Annotations
 - Bed file obtained during step 1

Tools ☆ ≔	Convert GTF to BED12 (Galaxy Version 357)	☆	•
BED12	GTF File to convert		
1 Upload Data	□ □ □ 5: Homo_sapiens.GRCh38.105.chr.gtf.gz -	1	
Show Sections	Advanced options		
Convert GTF to BED12	Use default options		•
bedtools BED12 to BED6 converter	Advanced options for gtfToGenePred.		
MACS2 callpeak Call peaks from alignment results	Email notification 9: Convert GTF to BED1		
bedtools BAM to BED converter	Send an email notificatio 2 on data 5: BED12		
WORKFLOWS	 Execute ~240,000 regions format: bed12, database: hg38 		
All workflows	Image: Section 1 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image:		

Read distribution


Total Reads Total Tags* Total Assigned T 	430806 499822 ags ° 468213	200	
Group	Total bases	Tag count	Tags/Kb
CDS_Exons	35875018	30475010	849.48
5'UTR_Exons	48312525	2562470	53.04
3'UTR_Exons	75444264	10416230	138.07
Introns	1613277549	3000938	1.86
TSS_up_1kb	28388776	36020	1.27
TSS_up_5kb	126596357	66649	0.53
TSS_up_10kb	225614841	90707	0.40
TES_down_1kb	30986381	124903	4.03
TES_down_5kb	133535951	201514	1.51
TES_down_10kb	233464669	275998	1.18

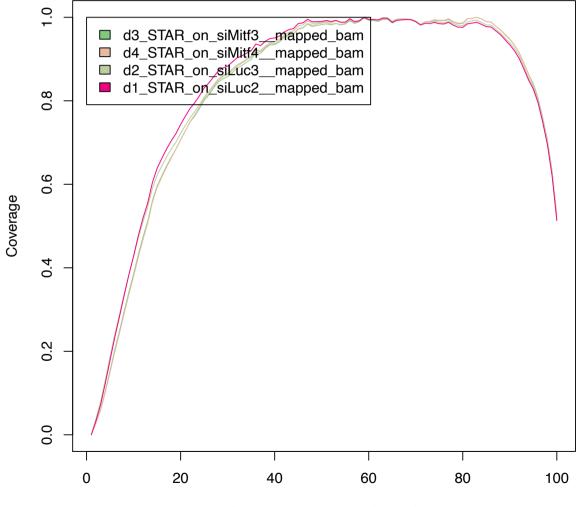
 * reads spliced once are counted as 2 tags, reads spliced twice are counted as 3 tags, ... $^{\circ}\,$ number of tags that can be assigned to the 10 groups

Tags assigned to "TSS_up_1kb" are also assigned to "TSS_up_5kb" and "TSS_up_10kb" Tags assigned to "TSS_up_5kb" are also assigned to "TSS_up_10kb"

Read coverage over genes

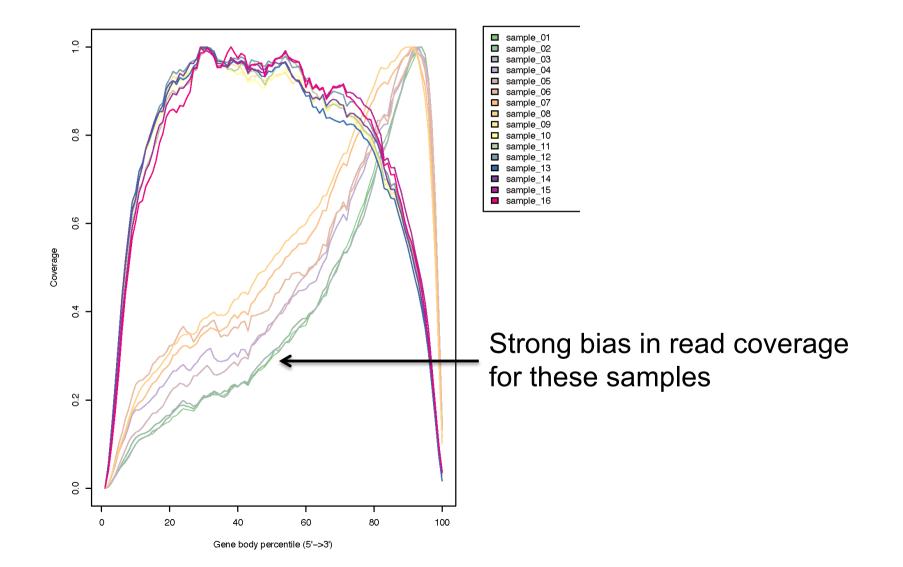
- To identify any bias in read coverage over genes
- RSeQC Gene Body Coverage

From http://rseqc.sourceforge.net/


Read coverage over genes : Galaxy

Don't perform this analysis today

🔑 Gene Boo	ly Coverage (BAM) Read coverage over gene body (Galaxy Version 2.6.4.3)		☆	•
Run each sar	nple separately, or combine mutiple samples into one plot			
Combine mu	Iltiple samples into a single plot			
Input .bam	file(s)			
	4: RNA STAR on siMitf4: mapped.bam 3: RNA STAR on siMitf3: mapped.bam 2: RNA STAR on siLuc3: mapped.bam 1: RNA STAR on siLuc2: mapped.bam	-	1	
(input-file Reference ge				
(refgene)	5: Convert GTF to BED12 on data 5: BED12	•	1	
	NA length (default: 100)			
100				
	NA length in bp, mRNA that are shorter than this value will be skipped (minimum_length).			
Output R-Sci	ript			
No No				
Output the R-	Script used to generate the plots			
Email notifica	ation			
Send an emai	I notification when the job completes.			


✓ Execute

Read coverage over genes : result

Gene body percentile (5'->3')

Read coverage over genes : example with biased samples

Strand information (directional protocol)

- To infer how reads were stranded for strand-specific RNA-seq data
 - Compare the "strandness of reads" with the "strandness of transcripts"
 - The "strandness of reads" is determined from alignment
 - The "strandness of transcripts" is determined from annotation

RSeQC infer experiment

• Calculates the proportion of reads corresponding to :

++, +-,-+		Annotated gene on + strand	Annotated gene on - strand
	Read mapped to + strand	++	+-
	Read mapped to - strand	-+	

- Launch Infer experiment on the mapping results obtained on siLuc2 data from the two different protocols and compare the two results
 - Alignment files
 - RNA STAR on siLuc2: mapped.bam (already imported)
 - 16: RNA STAR on siLuc2_other_protocol: mapped.bam (to import)
 - Annotations
 - Bed file obtained during the previous exercise

■ Infer experiment on siLuc2 mapping results :

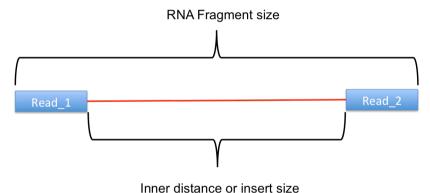
Infer Experiment speculates how RNA-seq were configured (Galaxy Version 2.6.4.1)	☆ 🔹
Input .bam file	
Image: Description of the second state of the second st	
(input-file)	
Reference gene model	
Image: Convert GTF to BED12 on data 5: BED12	
(refgene)	
Number of reads sampled from SAM/BAM file (default = 200000)	
200000	
(sample-size)	
Minimum mapping quality	
30	
Minimum mapping quality for an alignment to be considered as "uniquely mapped" (mapq)	
Email notification	
Send an email notification when the job completes.	
✓ Execute	

Infer experiment on siLuc2 mapping results from the library prepared with another protocol :

Infer Experiment speculates how RNA-seq were configured (Galaxy Version 2.6.4.1)	☆	•
Input .bam file		
Image: Description of the state of the	1.	ß
(input-file)		
Reference gene model		
Image: Convert GTF to BED12 on data 5: BED12	1	
(refgene)		
Number of reads sampled from SAM/BAM file (default = 200000)		
200000		
(sample-size)		
Minimum mapping quality		
30		
Minimum mapping quality for an alignment to be considered as "uniquely mapped" (mapq)		
Email notification		
Send an email notification when the job completes.		
✓ Execute		

Infer experiment

on siLuc2 library prepared with a directional protocol :

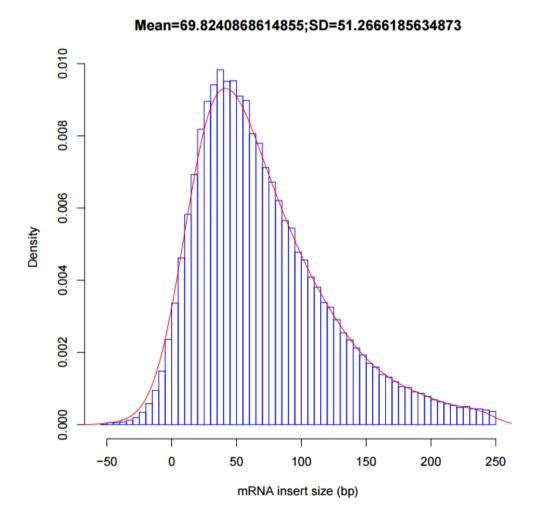

This is SingleEnd Data Fraction of reads failed to determine: 0.1034 Fraction of reads explained by "++,--": 0.0078 Fraction of reads explained by "+-,-+": 0.8887

On siLuc2 library prepared with a non directional protocol :

```
This is SingleEnd Data
Fraction of reads failed to determine: 0.1446
Fraction of reads explained by "++,--": 0.4278
Fraction of reads explained by "+-,-+": 0.4277
```

Distance between reads (paired-end sequencing)

- To know inner distance (insert size) between paired reads
 - The distance is the mRNA length between two paired fragments



RSeQC Inner Distance

Determines the genomic (DNA) size between two paired reads: D_size = read2 start - read1 end

- if 2 paired reads map to the same exon or a non-exonic region
 - inner_distance = D_size
- if 2 paired reads map to different exons
 - inner_distance = D_size intron_size
- The inner_distance might be a negative value if 2 fragments overlapped

RSeQC inner distance : example of result

