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From reads to peaks
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From reads to peaks
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QC: cross correlation analysis

- The cross-correlation metric is computed as the
Pearson's linear correlation between the Crick strand
and the Watson strand, after shifting Watson by & base
pairs.
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QC: cross correlation analysis
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Estimating the fragment size

- Homer (Heinz et al, 2010): Compute distribution of
distances between adjacent reads in the genome

25000
Same Strand
20000 ;
{ Opposite Strand
£ ~
) 71 f A
a. 15000 Hadts \
§ - | Fragmentlength
( \
T 10000 |
o
-
5000 /]
0

-1000 -750 -500 -250 0 250 500 750 1000
Relative Distance between Reads (bp)




Sequencing depth normalization

- Normalizing by total read numbers: scaling the local

read density by a multiplicative ratio of total sequencing
depths.

- Normalizing to 1x or 10x coverage: norm.binCount/ 1x
coverage = real bin count / real coverage

- RPKM: number of reads per bin/ ( number of mapped
reads (in millions) * bin length (kbp) )




Input normalization

- Naive subtraction: treatment — input. To be done, first
scale the two libraries by the total number of reads
(ibrary size)

 Normalizingby total read count <+ Normalizingthe background

Diazet al, 2012




Spike-1n

- Current normalization methods fail to detect global
changes as they make the assumption that globally
nothing change but a small portion of the genome

- Insert external chromatin used as reference chromatin

Traditional normalization (RPM) obscures epigenomic differences
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Spike-1n

- Spike-in normalization can be applied to ChIP-Seq data
to reduce the effects of technical variation and sample
processing bias
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Peak detection

- Discover interaction sites from aligned reads

- Idea:loci with a lot of reads/fragments = signal site
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Peak detection

- Loc1 with lots of reads could also be due to
* Sequencing biases
* Chromatin biases (e.g CNVs)
- PCR biases/artefacts
- Biases/artefacts of unknown origin
- So need to separate signal from noise

- Need to use a control to correct for the biases (Expect
that the biaises are similar in input and in IP)




Peak finders

Basic components of peak callers:

- A signal profile definition along each chromosome
- A background model

- Peak call criteria

- Post-call filtering of artifactual peaks

- Significance ranking of called peaks

Pepke et al, 2009




Peak finders

Calenome

ERAMNGE
vi.l

FindPeaks
vi.i 0.2

F-Seg
vi. g2

GUTR

MALS
vi.35

PeaiSes

QuEsT

va.d

SICER

vi.oe

SISSRs

Profile

Strand-specific
window scan

Tag
aggregation

Aggregatan
of averlapped
1ags

Kemel density
estimation

{KDE)

Aggregatien
of averlapped
1839

Tags shifted
then window
scan
Extended tag
aggregation

Kemel density
estimation

Window scan
with gaps
allowed

Window scan

Peak criteria®

1: Number of reads
in window

2: Number of
ChlP seads mines
control seads in
window

1: Height cuto®
High quality peax
estimate, per
regieon estimate,
or fnput

Meight threshold

s 5.d. above KDL
for 1: andem
background, 2:
cantrol
Cassification
by height

and relative
enrichment
Lecal region
Pofsson P vadlue

Lecal region

binomial P value

2: Helght
threshold
background ntio

P value from
ransom
bacsground

madel, enrichmem

relative to control
N_-N_sign
change, N_+

M shrarbnld in

Tag shift
Average

for highest
ranking peak
patrs

High quality
peak estimate
per-region
estimate, or
Inpet

Input or
estimated

Input or
estimated

Usar fnput tag
extension

Estimate from
high quality
peak pairs
Input tag
extension
length

Mode of local
shifts that
maximize
strand Ccross
carelation

Input

Average

nearest patred

tam drvanra

Control dats® Rank by

Conditional Number of

binomial used to reads under

estimate FOR peak

Used to calculate P valoe

fold enrichment

and cptionaily

P valoes

NA Number of
reads under
peak

KDE for local

background

Peak height

Malziply sampied
to estimate

background «

Feak height
and fold
ass  enfichrent
values

Used for Poisson P valee

it when availadle

Used for
significance of
sample enrichment

with binomial

g vaue

distribution

KDE for
enrichment and
empirical FOR
estimation

g vanue

Linearly sescaled
for candidate peak
reection and ¥
vaues

g vinwe

Used %0 compute P valee
fold-enrichment

Areribiition

FOR®

1: Negative
bincmial

2: conazional
bincmial

: None
: § control
[ Jedig

"o

: Monte Carlo
imulation
: NA

PR

: None

Nome

€ & control
# OalP

1: None
2: & control

# (6P
1: Poisson
background
assunpticn
2: From
bincmial for
sample plus
control
1: NA
¢ § control

g (alpP
3 2 function of
peofile thresheld
1: Nome
2: from Porsson
P values

1: Poisson
: control

e e

User input
parametent
Target FOR,
optional window
width, window
imenal

Optionel peak
height, matio 10
background

Minimum peak
height, subpeak
valley depth
Threshold s.d
v, KDE
bandwidth

Target FOR
namber nearest
neighbors for
clustering
F-value threshold
tag length, mfold
for shift estimate

Target FOR

KDE bandwicth
peak hesght,
subpeac valiey
depth, qtio to
background
Window length
gap size, FOR
(with contrel) or
E-value

(mo contsol)

1: FOR
L2ZIN+N

[ae—

Artifact
filtering:
strand-based/
duplicate*
Yes / Yes
Yes / No
Yes / Yes
No / Mo
No /Mo
No / Yes
No / Mo
Yes / Yes
No / Yes
Yes / Yos

Pepke et al, 2009

Refs,
10

i




MACS [Zhang et al, 2008]

1. Modeling the shift size of ChIP-Seq tags

* slides 2bandwidth windows across the genome to find regions
with tags more than mfold enriched relative to a random tag
genome distribution

* randomly samples 1,000 of these highly enriched peaks

- separates their Watson and Crick tags, and aligns them by
the midpoint between their Watson and Crick tag centers

- define d as the distance in bp between the summit of the two

distributions
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MACS [Zhang et al, 2008]

- 2. Peak detection

* Normalization: linearly scales the total control read count to
be the same as the total ChIP read count

* Duplicate read removal
+ Tags are shifted by d/2

Generate signal profile
along each chromosome

~
Tag shift

Tag count

Pepke et al, 2009




MACS [Zhang et al, 2008]

+ Slides 2d windows across the genome to find candidate peaks
with a significant tag enrichment (Poisson distribution p-

value based on Apg, default 10-%)
- Estimate parameter A,.,; of Poisson distribution
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MACS [Zhang et al, 2008]

3. Multiple testing correction (FDR)

- Swap treatment and input and call negative peaks

- Take all the peaks (neg + pos) and sort them by

Increasing p-values

# Negative peaks with p-value<p
# Selected peaks

FDR(p)=

<— FDR=2/27=0.074




Exercise: peak calling

We now want to call MITF peaks.

- 1. Use Macs2 callpeak to perform the peak calling on the
data. Use default parameters except for

« ChIP-Seq Treatment File: mitf.bam
« ChIP-Seq Control File: ctrl.bam
- Effective genome size: Human

: gltéﬁcpilﬁtf):gﬁaks as tabular file, summits, Summary page (html),

- 2. Look at the resulting datasets. How many peaks are
found?

- 3. What is the fragment size estimated by Macs2? What do
you think of the value?

- 4. Rerun Macs2 using the same parameters as before but
changing the shift size:

* Build Model: Do not build the shifting model (--nomodel)
* The arbitrary extension size in bp: 100

- 5. How many peaks are now found?




How to deal with replicates

Analyze samples separately Merge samples prior to the
and takes union or peak calling (e.g recommended
intersection of resulting peaks by MACS)

Sample 1.a Sample 1.b Sample 1.a Sample 1.b

Sample 1
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IDR

- Measures consistency between replicates

- Uses reproducibility in score rankings between peaks in
each replicate to determine an optimal cutoff for
significance.

- Idea:

- The most significant peaks are expected to have high
consistency betweenreplicates

* The peaks with low significance are expected to have low
consistency

https://sites.google.com/site/anshulkundaje/projects/idr




RAD21 Replicates (high reproducibility)
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Differential binding analysis

- Find differential binding events by comparing different
conditions
* qualitative analysis: binding vs no binding
* quantitative analysis: weak binding vs strong binding
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Differential binding analysis

Qualitative approach

Peaksuniqueto A Peaksunique to B
v

Common peaks




Differential binding analysis

Quantitative approach
* Do the peak calling on all data
+ Take union of all peaks

- Do quantitative analysis of differential binding events based
on read counts

- Statistical models
* No replicates: assume simple Poisson model

- With replicates: perform differential test using DE tools from
RNA-seq (EdgeR, DESeq,...) based on read counts




