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From reads to peaks
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From reads to peaks

- Get the signal at the right
position
- Read shift
- Extension

- Estimate the fragment size

- Do paired-end
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QC: cross correlation analysis

- The cross-correlation metric is computed as the
Pearson's linear correlation between the Crick strand
and the Watson strand, after shifting Watson by & base
pairs.
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QC: cross correlation analysis
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Estimating the fragment size

- Homer (Heinz et al, 2010): Compute distribution of
distances between adjacent reads in the genome
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Sequencing depth normalization

- Normalizing by total read numbers: scaling the local
read density by a multiplicative ratio of total sequencing
depths.

- Normalizing to 1x or 10x coverage: norm.binCount / 1x
coverage = real bin count / real coverage

- RPKM: number of reads per bin / ( number of mapped
reads (in millions) * bin length (kbp) )




Input normalization

- Naive subtraction: treatment — input. To be done, first
scale the two libraries by the total number of reads
(Iibrary size)

 Normalizing by total read count ¢ Normalizing the background

equalize
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Diaz et al, 2012




Peak detection

- Discover interaction sites from aligned reads

- Idea: loci with a lot of reads/fragments = signal site
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Peak detection

- Loci with lots of reads could also be due to
* Sequencing biases
* Chromatin biases (e.g CNVs)
- PCR biases/artefacts
- Biases/artefacts of unknown origin
* So need to separate signal from noise

- Need to use a control to correct for the biases (Expect
that the biaises are similar in input and in IP)




Peak finders

Pepke et al, 2009

Artifact
filtering:
User input strand-based/
Profile Peak criteria® Tag shift Control data® Rank by FDR® parameters® duplicate® Refs.
CisGenome Strand-specific 1: Number of reads Average Conditional Number of  1: Negative Target FOR, Yes / Yes 10
vi.i window scan  in window for highest binomial used to  reads under binomial optional window
2: Number of ranking peak estimate FDR peak 2: conditional  width, window
ChIP reads minus  pairs binomial interval
control reads in
window
ERANGE Tag 1: Height cutoff  High quality  Used to calculate P value 1: None Optional peak Yes / No 4,18
v3.l aggregation  High gquality peak peak estimate, fold enrichment 2: § control height, ratio to
estimate, per- per-region and optionally # ChIP background
region estimate,  estimate, or  FPvalues
) or input input ) ) ] )
Aggregation  Height threshold  Input or NA Number of  1: Monte Carlo  Minimum peak Yes / Yes 19
FindPeaks of overlapped estimated reads under simulation height, subpeak
v3.1.9.2 tags peak 2: NA valley depth
F-Seq Kernel density ss.d. above KDE  Imput or KDE for local Peak height 1: None Threshold s.d. No / No 14
v1.82 estimation for 1: random estimated background 2: None value, KDE
{KDE) background, 2: bandwidth
control
GLITR Aggregation  Classification Userinput tag Multiply sampled Peak height 2: § control Target FDR, No / No 17
of overlapped by height extension to estimate and fold “#ChIP number nearest
tags and relative background class  enrichment neighbors for
enrichment values clustering
MACS Tags shifted Local region Estimate from Used for Poisson P value 1: None P-value threshold, No / Yes 13
v1.3.5 then window  Foisson F value high quality  fit when available 2t § control tag length, mfold
scan peak pairs 4 ChIP for shift estimate
PeakSeq Extended tag  Local region Input tag Used for g value 1: Poisson Target FOR No / No 5
aggregation  binomial P value  extension significance of background
length sample enrichment assumption
with binomial 2: From
distribution binomial for
sample plus
control
QuEST Kernel density 2: Height Mode of local  KDE for g value 1: NA KDE bandwidth, Yes / Yes 9
v2.3 estimation threshold, shifts that enrichment and 2: § control peak height,
background ratic  maximize empirical FDR 4 ChIP subpeak valley
strand cross-  estimation as a function of depth, ratio to
correlation profile threshold background
SICER Window scan P value from Input Linearly rescaled g value 1: None Window length, No / Yes 15
v1.02 with gaps random for candidate peak 2: From Poisson gap size, FOR
allowed background rejection and P P values (with control) or
model, enrichment values E-value
) relative to control ) ) (no control)
SiSSRs Window scan  N_- N_sign Average Used to compute P value 1: Poisson 1: FDR Yes / Yes 11
v1.4 change, N, + nearest paired fold-enrichment 2: control 1L2: N+ N,
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Peak finders

Basic components of peak callers:

- A signal profile definition along each chromosome
- A background model

- Peak call criteria

- Post-call filtering of artifactual peaks

- Significance ranking of called peaks

Pepke et al, 2009




MACS [Zhang et al, 2008]

1. Modeling the shift size of ChIP-Seq tags

- slides 2bandwidth windows across the genome to find regions
with tags more than mfold enriched relative to a random tag
genome distribution

- randomly samples 1,000 of these highly enriched peaks

- separates their Watson and Crick tags, and aligns them by
the midpoint between their Watson and Crick tag centers

- define d as the distance in bp between the summait of the two
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MACS [Zhang et al, 2008]

- 2. Peak detection

* Normalization: linearly scales the total control read count to
be the same as the total ChIP read count

* Duplicate read removal
- Tags are shifted by d/2

Generate signal profile
along each chromosome

—>¢—
Tag shift

Tag count

Position (bp)

Pepke et al, 2009




MACS [Zhang et al, 2008]

+ Slides 2d windows across the genome to find candidate peaks
with a significant tag enrichment (Poisson distribution p-

value based on Ay, default 10-%)
- Estimate parameter A, ,; of Poisson distribution
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MACS [Zhang et al, 2008]

3. Multiple testing correction (FDR)

- Swap treatment and input and call negative peaks

- Take all the peaks (neg + pos) and sort them by

Increasing p-values

# Negative peaks with p-value <p

FDR(p) =
# Selected peaks

«<— FDR=2/27=0.074




Exercise: peak calling

We now want to call MITF peaks.

- 1. Use Macs2 callpeak to perform the peak calling on the
data. Use default parameters except for

« ChIP-Seq Treatment File: mitf.bam
+ ChIP-Seq Control File: ctrl.bam
- Effective genome size: Human

* Qutputs: Peaks as tabular file, summits, Summary page (html),
Plot in PDF

- 2. Look at the resulting datasets. How many peaks are
found?

- 3. What 1s the fragment size estimated by Macs2? What do
you think of the value?

- 4. Rerun Macs2 using the same parameters as before but
changing the shift size:
* Build Model: Do not build the shifting model (--nomodel)
* The arbitrary extension size in bp: 100

- 5. How many peaks are now found?




How to deal with replicates

Analyze samples separately
and takes union or
intersection of resulting peaks

Sample 1.a Sample 1.b

Al

Merge samples prior to the

peak calling (e.g recommended
by MACS)

Sample 1.a Sample 1.b
Sample 1




IDR

- Measures consistency between replicates

- Uses reproducibility in score rankings between peaks in
each replicate to determine an optimal cutoff for
significance.

- Idea:

+ The most significant peaks are expected to have high
consistency between replicates

* The peaks with low significance are expected to have low
consistency

https://sites.google.com/site/anshulkundaje/projects/idr




IDR

RAD21 Replicates (high reproducibility)
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Differential binding analysis

- Find differential binding events by comparing different
conditions

- qualitative analysis: binding vs no binding

- quantitative analysis: weak binding vs strong binding

S AN AR A
AN AWA

a=0 a>b a<b a=b b=0




Differential binding analysis

Qualitative approach

Peaks unique to A Peaks unique to B

Common peaks




Differential binding analysis

Quantitative approach
* Do the peak calling on all data
+ Take union of all peaks

- Do quantitative analysis of differential binding events based
on read counts

- Statistical models
- No replicates: assume simple Poisson model

- With replicates: perform differential test using DE tools from
RNA-seq (EdgeR, DESeq,...) based on read counts




Spike-1n

- Current normalization methods fail to detect global
changes as they make the assumption that globally
nothing change but a small portion of the genome

- Insert external chromatin used as reference chromatin

Traditional normalization (RPM) obscures epigenomic differences
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Spike-1n

- Spike-in normalization can be applied to ChIP-Seq data
to reduce the effects of technical variation and sample
processing bias

Drosophila Drosophila Target Human
chromatin antibody antibody chromatin
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Normalize Drosophila Normalize Human tags by
tag counts across samples - same ratio as Drosophila

http://www.activemotif.com/catalog/1091/chip-normalization




