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From reads to peaks
• Chip-seq peaks are a 

mixture of two signals:
� + strand reads (Watson)
� - strand reads (Cricks)

• The sequence tag density 
accumulates on forward 
and reverse strands 
centered around the 
binding site
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From reads to peaks
• Get the signal at the right 

position
� Read shift 
� Extension

• Estimate the fragment size

• Do paired-end



QC: cross correlation analysis
• The cross-correlation metric is computed as the 

Pearson's linear correlation between the Crick strand
and the Watson strand, after shifting Watson by k base 
pairs. 
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QC: cross correlation analysis

NSC: normalized strand coefficient Relative strand correlation (RSC)



Estimating the fragment size
• Homer (Heinz et al, 2010): Compute distribution of 

distances between adjacent reads in the genome
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Fragment length



Sequencing depth normalization
• Normalizing by total read numbers: scaling the local 

read density by a multiplicative ratio of total sequencing 
depths.

• Normalizing to 1x or 10x coverage: norm.binCount / 1x 
coverage = real bin count / real coverage 

• RPKM: number of reads per bin / ( number of mapped 
reads (in millions) * bin length (kbp) ) 
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Input normalization
• Naïve subtraction: treatment – input. To be done, first 

scale the two libraries by the total number of reads 
(library size)
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Diaz et al, 2012

• Normalizing by total read count • Normalizing the background



Peak detection
• Discover interaction sites from aligned reads

• Idea: loci with a lot of reads/fragments = signal site
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Peak detection
• Loci with lots of reads could also be due to

� Sequencing biases
� Chromatin biases (e.g CNVs)
� PCR biases/artefacts
� Biases/artefacts of unknown origin
� So need to separate signal from noise

• Need to use a control to correct for the biases (Expect
that the biaises are similar in input and in IP)
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Peak finders Pepke et al, 2009



Peak finders
Basic components of peak callers:

• A signal profile definition along each chromosome 

• A background model 

• Peak call criteria

• Post-call filtering of artifactual peaks

• Significance ranking of called peaks

13Pepke et al, 2009



MACS [Zhang et al, 2008]
1. Modeling the shift size of ChIP-Seq tags

� slides 2bandwidth windows across the genome to find regions 
with tags more than mfold enriched relative to a random tag 
genome distribution

� randomly samples 1,000 of these highly enriched peaks
� separates their Watson and Crick tags, and aligns them by 

the midpoint between their Watson and Crick tag centers
� define d as the distance in bp between the summit of the two 

distributions
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MACS [Zhang et al, 2008]
• 2. Peak detection

� Normalization: linearly scales the total control read count to 
be the same as the total ChIP read count

� Duplicate read removal
� Tags are shifted by d/2

15Pepke et al, 2009



MACS [Zhang et al, 2008]
� Slides 2d windows across the genome to find candidate peaks 

with a significant tag enrichment (Poisson distribution p-
value based on λBG, default 10-5)

� Estimate parameter λlocal of Poisson distribution

� Keep peaks significant under λBG and λlocal and with p-value 
< threshold
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Source:
C. Herrmann



MACS [Zhang et al, 2008]
3. Multiple testing correction (FDR)
• Swap treatment and input and call negative peaks
• Take all the peaks (neg + pos) and sort them by 

increasing p-values
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FDR(p) =   
# Negative peaks with p-value < p

# Selected peaks
FDR = 2/27 = 0.074



Exercise: peak calling
We now want to call MITF peaks.

• 1. Use Macs2 callpeak to perform the peak calling on the 
data. Use default parameters except for
� ChIP-Seq Treatment File: mitf.bam
� ChIP-Seq Control File: ctrl.bam
� Effective genome size: Human
� Outputs: Peaks as tabular file, summits, Summary page (html), 

Plot in PDF

• 2. Look at the resulting datasets. How many peaks are 
found? 

• 3. What is the fragment size estimated by Macs2? What do 
you think of the value?

• 4. Rerun Macs2 using the same parameters as before but 
changing the shift size:
� Build Model: Do not build the shifting model (--nomodel)
� The arbitrary extension size in bp: 100

• 5. How many peaks are now found?
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How to deal with replicates
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Sample 1.a Sample 1.b

Analyze samples separately 
and takes union or 
intersection of resulting peaks

Sample 1.a Sample 1.b

Sample 1

Merge samples prior to the 
peak calling (e.g recommended 
by MACS)



IDR
• Measures consistency between replicates

• Uses reproducibility in score rankings between peaks in 
each replicate to determine an optimal cutoff for 
significance.

• Idea:
� The most significant peaks are expected to have high 

consistency between replicates
� The peaks with low significance are expected to have low

consistency

20https://sites.google.com/site/anshulkundaje/projects/idr



IDR

21(!) IDR doesn’t work on broad source data!



Differential binding analysis
• Find differential binding events by comparing different 

conditions
� qualitative analysis: binding vs no binding
� quantitative analysis: weak binding vs strong binding 
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Cond. a

Cond. b

a=0 a>b a<b a=b b=0



Differential binding analysis
Qualitative approach
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Peaks unique to BPeaks unique to A

A B

Common peaks



Differential binding analysis
Quantitative approach

� Do the peak calling on all data
� Take union of all peaks
� Do quantitative analysis of differential binding events based 

on read counts

• Statistical models
� No replicates: assume simple Poisson model
� With replicates: perform differential test using DE tools from 

RNA-seq (EdgeR, DESeq,...) based on read counts
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Spike-in
• Current normalization methods fail to detect global 

changes as they make the assumption that globally 
nothing change but a small portion of the genome

• Insert external chromatin used as reference chromatin

25Orlando et al, 2014



Spike-in
• Spike-in normalization can be applied to ChIP-Seq data 

to reduce the effects of technical variation and sample
processing bias

26http://www.activemotif.com/catalog/1091/chip-normalization


