# ChIP-seq: Peak Calling 

 (answers to questions)
## Exercise: peak calling

- 1. 
- Search for "macs2 callpeak" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
- ChIP-Seq Treatment File: mitf.bam
- ChIP-Seq Control File: ctrl.bam
- Effective genome size: Human
- Outputs: select Peaks as tabular file, summits, Summary page (html), Plot in PDF
- Click on $\checkmark$ Execute


## Exercise: peak calling

- 2. Macs2 callpeak generates 5 datasets:
- List of the peaks (tabular format)



## Exercise: peak calling

## - 2. Macs2 callpeak generates 5 datasets:

- List of the peaks (tabular format)

| 26 | chr | start | end | length | abs_summit | pileup | -log10(pvalue) | fold_enrichment | -log10(qvalue) | name |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 27 | chr1 | 980686 | 980816 | 131 | 980745 | 8.48 | 10.38277 | 7.29361 | 6.46786 | MACS2_peak_1 |
| 28 | chr1 | 983821 | 983925 | 105 | 983877 | 6.94 | 9.11038 | 6.77148 | 5.34984 | MACS2_peak_2 |
| 29 | chr1 | 1031344 | 1031475 | 132 | 1031406 | 6.17 | 6.82634 | 5.21345 | 3.25879 | MACS2_peak_3 |
| 30 | chr1 | 1079424 | 1079564 | 141 | 1079490 | 12.34 | 18.30659 | 10.88735 | 13.88358 | MACS2_peak_4 |
| 31 | chr1 | 1304817 | 1304958 | 142 | 1304891 | 13.11 | 20.10101 | 11.51679 | 15.56374 | MACS2_peak_5 |

- chr: chromosome name
- start: start position of peak
- end: end position of peak
- length: length of peak region
- abs_summit: absolute peak summit position
- pileup: pileup height at peak summit
-     - $\log 10$ (pvalue): - $\log 10$ (pvalue) for the peak summit (e.g. pvalue $=1 \mathrm{e}-10$, then this value should be 10)
- fold_enrichment: fold enrichment for this peak summit against random Poisson distribution with local lambda
-     - $\log 10$ (qvalue): - $\log 10$ (qvalue) at peak summit
- name: peak name


## Exercise: peak calling

- List of the peaks (Narrowpeak format)

| 1 |  |  |  | 5 | 6 | 7 |  | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| chr1 | 980685 | 980816 | ACS2 | 64 |  | 7.2936 | 10.38277 | 6.46786 | 59 |
| chr 1 | 983820 | 983925 | ACS2 | 53 |  | 6.7714 | 9.11038 | 5.34984 | 56 |
| chr1 | 1031343 | 1031475 | ACS2_peak_3 | 32 |  | 5.2134 | 6.82634 | 3.25879 | 62 |
| chr 1 | 1079423 | 1079564 | MACS2_peak_4 | 138 |  | 0.88735 | 18.30659 | 13.88358 | 6 |
| chr 1 | 1304816 | 1304958 | MACS2_peak_5 | 155 |  | 11.51679 | 20.10101 | 15.56374 | 74 |
| chr1 | 1441082 | 1441181 | MACS2_peak_6 | 124 |  | 10.25923 | 16.71260 | 12.40068 | 71 |
|  |  |  |  |  |  |  |  |  |  |

## Exercise: peak calling

- List of the peak summits (BED): contains the peak summit location for each peak.



## Exercise: peak calling

- PDF images about the model based on your data



## Exercise: peak calling

- There is 12,298 peaks

```
47: MACS2 callpeak on
mitf and ctrl - 1 (narrow
Peaks)
12,298 regions
format: bed, database: hg38
```

- 3. Look at the HTML dataset

\#2 alternative fragment length(s) may be 75 bps
\#2.2 Generate R script for model : MACS2_model.r
- The d value estimated by MACS seems a bit small. Let's try to re-run MACS with the expected fragment size : 200


## Exercise: peak calling

- 4. 
- Click on the name of one of the datasets generated by Macs2.
- Click on $\boldsymbol{\approx}$ to display Macs2 form with the same parameters as for the previous run of Macs2
- In Build Model, select Do not build the shifting model (-nomodel)
- Enter 100 in the text box "The arbitrary extension size in bp"
- Click on $\checkmark$ Execute
- 5. 
- 7,745 peaks are now found

```
52: MACS2 callpeak on
mitf and ctrl - 2 (narrow
Peaks)
7,745 regions
format: bed, database: hg38
```

- NOTE: the graphs (showing the d values estimate) are no longer generated

