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De novo transcriptome assembly

< Purpose
< Analyse transcriptome on organisms without reference genome
< Detect chimeric transcripts from chromosomal rearrangements

< Read coverage need to be high enough to build contigs
Contig : set of overlapping sequences 
that together represent a DNA region

< Challenges (as for genome assembly)
< Repetitive regions, sequencing errors 

< And more challenges specific to transcriptome assembly
< Transcriptome coverage highly dependent on gene expression
< Ambiguities in transcriptome assembly due to alternative splicing, 

alternative promoter usage, alternative polyA, overlapping transcripts

Contig 1 Contig 2

Consensus sequence



Programs for de novo transcriptome assembly

< Different programs
< Velvet/Oases (Shulz et al. Bioinformatics 2012;28(8):1086-1092)
< Trans-ABySS (Robertson et al. Nature methods 2010; 7:909–912)
< Trinity (Haas et al. Nature Protocols 2013; 8:1494–1512)

< Comparisons
< On Illumina data : Zhao et al. (BMC Bioinformatics 2011; 12(14):S2)
< Which method will perform best is a function of read length, 

sequencing coverage and transcriptome complexity



De novo transcriptome assembly : 
general method

< Breaks reads into k-mers (short sub-sequences of length k)

< Arranges k-mers into a graph structure (De Brujn graph)
< Nodes : all sub-sequences of length k present in the sample
< Arcs : link nodes to represent all sequences present in the sample

< Parse graph in order to create contigs
< Look at the coverage to decide to follow a path or to remove it 

in order to avoid sequencing errors
< Choice of k-mer length greatly influence result of the assembly
< Functional annotation of contigs (with Gene Ontology e.g. Blast2GO, 

screen for Open Reading Frames, for known protein domains, ..)

e.g. 1 read = ACTG, k=3 è k-mers = ACT, CTG
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Genome-guided assembly methods

< Use spliced reads to reconstruct the transcriptome
1. Build a transcriptome assembly graph
2. Parse the graph into transcripts (1 path = 1 isoform)

è Cufflinks reports the minimal number of compatible isoforms 
i.e. a minimal number of isoforms such that all reads are included in 
at least one path à uses read coverage to decide which combination 
of isoforms is most likely to originate from the same RNA
(Trapnell et al. Nature Biotechnology 2010;28(5):511-5)
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Genome annotations

< Generally provided in a GTF/GFF file
< cf. course on read mapping

< Different annotations sources : AceView, Ensembl, UCSC, Refseq…
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Gene-level quantification

< How to summarize expression level of genes with several isoforms ?

< Exon-union method
Count reads mapped to all exons from all isoforms of the gene

< Exon-intersection method
Count only reads mapped to its constitutive exons

è reduce power for differential expression analysis

Isoform 1

Isoform 2

Gene
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Gene-level quantification : 
HTSeq-count

< How to deal with multiple aligned reads ?
< Multi-mapped reads are discarded rather than counted for each feature 

because the primary intended use case for htseq-count is differential 
expression analysis

< i.e. comparison of the expression of the same gene across samples
< Why ?

< Consider 2 genes with multiple aligned reads on these genes
< Discard multiple aligned reads 

<à undercount the total output of these 2 genes
<but the expression ratio between conditions will still be correct 

because we discard the same fraction of reads in all samples
< If we counted these reads for both genes 

<à differential expression analysis might find false positives
<Even if only one of the gene is differentially expressed, multi-

mapped reads would be counted for both genes, giving the 
wrong appearance that both genes are differentially expressed

Anders et al., Bioinformatics 2015;31(2):166-9



Gene-level quantification : 
HTSeq-count

< How to deal with overlapping features ?



HTSeq-count

< Input
< Alignment file (SAM/BAM)
< Annotation file (GFF) with the same chromosome names as in 

the alignment file

< Options

OK for Ensembl

Reverse for a directional protocol 
that generates reads in the 
opposite strand as the 
transcribed one
No for a non-directional protocol

cf. previous slide



Exercise : quantification of gene 
expression using HTSeq-count on Galaxy

<Lauch HTSeq-count to quantify gene expression 
on siLuc2_1000000 sample

< Inputs
< Alignment file you obtained with Tophat
< Ensembl release 85 annotations



Exercise : quantification of gene expression 
using HTSeq-count on Galaxy



HTSeq-count on GalaxEast

<Output
< A tabulated text file with

< the number of reads not 
assigned to genes

< The number of alignments 
not taken into account

< A tabulated text file with the 
number of reads assigned to 
each gene



HTSeq-count

< Results on siLuc2_1000000
1. Among uniquely aligned reads, what is the proportion of 
assigned, no feature and ambiguous reads ?
à Calculate the number of uniquely aligned reads
à What is the number of no feature reads ? Calculate the 

corresponding proportion
à What is the number of ambiguous reads ? Calculate the 

corresponding proportion
à Calculate the proportion of assigned reads



HTSeq-count

< Results on whole dataset
< Gene quantification results on the whole dataset are 

available in 
< Shared Data à Data Libraries à RNAseq à quantification 

< Summary of quantification results
Sample
name

%	of	assigned
reads

%	of	no	
feature reads

%	of	ambiguous
reads

siLuc2 88.71 8.87 2.41
siLuc3 88.87 8.64 2.49
siMitf3 88.21 9.32 2.47
siMitf4 89.49 8.12 2.39



Transcript-level quantification

< Some reads cannot be assigned unequivocally to a transcript

< Alexa-seq (Griffith et al. Nature methods 2010;7(10):843-7)

Counts only reads that map uniquely to a single isoform
è Fails for genes that do not contain unique exons from which to 
estimate isoform expression

< Cufflinks (Trapnell et al. Nature Biotechnology 2010;28(5):511-5)
MISO (Nature Mathods 2010 Dec;7(12):1009-15)
< Construct a likelihood function that models the sequencing process 
< Calculate isoforms abundance estimates that best explain reads 

observed in the experiment

Isoform 1

Isoform 2
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Exercise : statistical analysis using 
SARTools on GalaxEast

< SARTools
< R package dedicated to differential analysis of RNA-seq data
< Allows to

< Generate descriptive and diagnostic graphs
< Run differential analysis with DESeq2 or edgeR package
< Export the results into tab-delimited files
< Generate a report

< Does not replace DESeq2 or edgeR but simply provides an 
environment to use some of their functionalities

à We will use SARTools with DESeq2



Exercise : statistical analysis using 
SARTools on GalaxEast

< Input files for SARTools
< A zip file containing raw counts files
< A design file describing the experiment

< Design file for the analysis we would like to perform :

à These files can be prepared using the tool 
“Preprocess files for SARTools”



Exercise : statistical analysis using 
SARTools on GalaxEast

< Launch statistical analysis using SARTools DESeq2
1. Import raw count files
2. Prepare files for SARTools 
3. Launch SARTools DESeq2



Exercise
1. Import raw counts files

< Import all counts tables that have been obtained with HTSeq-count 
on the whole dataset

Shared Data à Data Libraries à CNRS training à RNAseq à quantification



Exercise
2. Prepare files for SARTools

< Use the tool “Preprocess files for SARTools” 



Exercise
2. Prepare files for SARTools



Exercise
3. Launch SARTools DESeq2



SARTools results

< Figures



SARTools results

Only significant up-regulated genes
(i.e. more expressed in siMitf than in siLuc)

< Tables

All genes
Only significant down-regulated genes
(i.e. less expressed in siMitf than in siLuc)



< Report
< Gives details about the methodology, the different steps and the results
< Displays all the figures produced and a summary of the differential 

analysis results

< Data exploration and visualisation
< Essential step before any analysis
< Allows data quality assessment and control
< Eventually leads to remove data with insufficient quality

SARTools results



SARTools results

<Report
< Description of raw data



Total read count per sample

Different between samples, as expected à normalization needed
More difficult when major differences between samples



Proportion of null counts per sample

Proportion of genes with null 
counts in all samples
à Such genes are left in the 
data but not taken into account 
in the analysis (results=NA in 
the results file)

We expect this proportion to be similar between samples



Density distribution of read counts

We expect replicates to have similar distributions



Proportion of reads
from most expressed genes

We expect these high count features to be the same across replicates



Pairwise comparison of samples

SERE values

We expect replicates to have correlated read counts



SERE coefficient

< Simple Error Ratio Estimate (Schulze et al. BMC Genomics 2012;13:524)

Observed standard deviation between two samples
Value that would be expected from an ideal experiment

< SERE = 0 è sample duplication
< SERE = 1 è technical replication 
< SERE > 1 è biological variation
< SERE é è Similarity ê

SERE =



Data transformation

< Many methods for exploratory data analysis (clustering, PCA) work best 
for data that generally have the same range of variance at different ranges 
of mean values

< However this is not the case for RNA-seq data
< e.g. PCA on RNA-seq data 
à result typically depends only on the few most strongly expressed genes 
because they show the largest absolute differences between samples
< Solution à stabilize variance across the mean

< VST (variance-stabilizing transformation) : mean-variance relationship 
estimated from the data (Anders et al. Genome Biology 2010, 11:106)

< rlog (regularized log-transformation) : fit a generalized linear model from the 
data, more robust when size factors vary widely (Love et al. Genome Biology 
2014, 15:550)

à Values approximately homoskedastic
(having constant variance along the range of mean values)



Samples clustering

We expect this dendrogram to group replicates 
and separate biological conditions

Obtained from VST-transformed data



PCA

The first principal component is expected to separate samples from the 
different biological conditions (i.e. corresponds to the main source of 
variance in the data)

Obtained from VST-transformed data



Data exploration on another dataset : 
outlier sample



Data exploration on another dataset : 
batch effect

Batch 1

Batch 2

à Take into account this batch effect in statistical analysis



Batch effect

< Preprocess files for SARTools

< SARTools
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Normalization : why ?

< To compare RNA-seq libraries
< with different sizes, eg :

< To compare the expression level of several genes within a library
Indeed read counts depend on
< Expression level

< Gene length

< Library size

Sample name Total number of reads
siLuc2 43,672,265
siLuc3 46,565,834
siMitf3 43,985,979
siMitf4 51,348,313



Different normalization methods

< Based on distribution adjustment
< Total read count 

< Motivation 
Higher library size è higher counts
< Method 
Divide counts by total number of reads

< Upper quartile (Bullard et al. BMC Bioinformatics 2010;11,94), Median
< Motivation 
Total read count is strongly dependent on a few highly expressed transcripts
< Method 
Divide counts by the upper quartile/median of the counts different from 0

< Quantile (Bolstad et al. Bioinformatics 2003; 19:185–93)
< Assumption 

Read counts have identical distribution across libraries
< Method 

Count distributions are matched between libraries



Different normalization methods

< Take into account gene/transcript length
< RPKM (Mortazavi et al. Nat Methods 2008;5:621–8), FPKM
< Reads (Fragments) per Kilobase per Million mapped reads
< Assumption

< Read counts =f(expression level, gene length, library size)
< Method

< Divide counts by gene length (kb) and total number of reads (million)
< Allows to compare expression levels between genes



Different normalization methods

< Based on the “effective library size” concept
< Assumption

< Most genes are not differentially expressed

< 2 methods
< Trimmed Mean of M values (Robinson et al. Genome Biol. 2010;11:R25)
< DESeq normalization (Anders et al. Genome Biol. 2010;11:R106)



Which normalization method to choose ?

< Comparison on 4 real and 1 simulated dataset

< Summary of comparison results

- : the method provided unsatisfactory results for the given criterion
+ : satisfactory results
++ : very satisfactory results

(Dillies et al. Brief. Bioinformatics 2013 Nov;14(6):671-83) 



DESeq normalization method

lib1 lib2 lib3      … lib j lib n

gene1 468 475 501 
gene2 45 56 76
gene3 2576 560 578
gene4 1678 1798 1867
…
gene i xij

n : number of samples to compare

xij : number of reads 
for gene i in sample j

(Anders et al. Genome Biol. 2010;11:R106)



DESeq normalization method

lib1 lib2 lib3      … lib j lib n

gene1 468 475 501 
gene2 45 56 76
gene3 2576 560 578
gene4 1678 1798 1867
…
gene i xij

Normalization factor for library j :

è Each value is divided by the geometric mean of its row
è Normalization factor = median of all these ratios

n : number of samples to compare

xij : number of reads 
for gene i in sample j



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 475 501 m1=481.1263
gene2 45 56 76 m2=57.64187
gene3 2576 560 578 m3=941.2115
gene4 1678 1798 1867 m4=1779.271

Normalization factor for library j :



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 / m1 475 / m1 501 / m1 m1=481.1263
gene2 45 / m2 56 / m2 76 / m2 m2=57.64187
gene3 2576 / m3 560 / m3 578 / m3 m3=941.2115
gene4 1678 / m4 1798 / m4 1867 / m4 m4=1779.271

Normalization factor for library j :

è Underlying idea : non-differentially expressed genes should 
have similar read count across samples leading to a ratio of 1 



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 / m1 475 / m1 501 / m1 m1=481.1263
gene2 45 / m2 56 / m2 76 / m2 m2=57.64187
gene3 2576 / m3 560 / m3 578 / m3 m3=941.2115
gene4 1678 / m4 1798 / m4 1867 / m4 m4=1779.271

median 0.9577858 0.9793598 1.0452989

Normalization factor for library j :

normalization factors 

à Median of these ratios for a library à estimate of the correction factor that 
should be applied to all read counts of this library
à Normalized read counts = raw read counts / normalization factor 



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 / m1 475 / m1 501 / m1 m1=481.1263
gene2 45 / m2 56 / m2 76 / m2 m2=57.64187
gene3 2576 / m3 560 / m3 578 / m3 m3=941.2115
gene4 1678 / m4 1798 / m4 1867 / m4 m4=1779.271

median 0.9577858 0.9793598 1.0452989

Normalization factor for library j :

normalization factors 

2. What are the values of these normalization factors 
for Mitf dataset ? 



Diagnostic plot for the estimation of 
normalization factors

This histogram should 
be unimodal, 
with a clear peak at the 
value of the size factor 
(represented in red)



Total number of reads vs size factors

Normalization by total number of reads and DESeq size factors is not 
exactly the same, but very close for this dataset 



Boxplots of raw and normalized read counts

We expect normalization to stabilize distributions across samples



Boxplots of raw and normalized read counts 
on another dataset
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Search for 
significantly differentially expressed genes

< What is significant differential expression ?
< The observed difference between conditions is statistically significant

i.e. greater than expected just due to random variation

< Microarray vs RNA-seq
< Microarray 

Fluorescence proportional to expression è continuous data
< RNA-seq

Number of reads assigned to a feature (gene, transcript) proportional 
to expression è count data

< Here we focus on count-based measures of gene expression



Search for 
significantly differentially expressed genes

< Use only a fold-change ranking ?
< Do not take variability into account
< Do not take level of expression into account
< No control of the false positive rate

< Hypothesis testing
< For each gene

< H0 : No gene expression difference between the compared conditions
< H1 : There is a gene expression difference between the compared conditions

< Steps
< Choose a statistic
< Define a decision rule

< Define a threshold below which we will reject H0



Statistic to search for 
significantly differentially expressed genes

< Sequencing a library = randomly and independently choose N 
sequences from the library
à read counts ~ multinomial distribution

< High number of reads, probability of a read assigned to a given 
gene small à Poisson approximation
< Distribution of counts across technical replicates for the majority of 

genes fit well to a Poisson distribution 
Marioni et al. Genome Research 2008;18(9):1509-17
Bullard et al. BMC Bioinformatics 2010;11,94

à Technical replicates ~ Poisson distribution



Statistic to search for 
significantly differentially expressed genes

< But Poisson distribution : variance = mean
è Across biological replicates variance > mean for many genes 
(Anders et al. Genome Biology 2010;11:R106) : overdispersion
è Negative binomial distribution : a good alternative to Poisson in the case 
of overdispersion

à Biological replicates ~ Negative binomial distribution

< How to estimate the overdispersion parameter ?
< Very few replicates è challenging issue
< DESeq2 (Love et al. Genome Biol. 2014;15:550)

Shares information across genes to improve the estimation of dispersion
Assumes that genes of similar average expression strength have similar 
dispersion



Dispersion plot

< Black : gene dispersion values 
(calculated using only the observed 
counts)

< Red : curve fitted to black dots to 
capture the overall trend of 
dispersion-mean dependence

< The red curve is used as a prior 
mean for a second estimation 
round, which results in final blue
values (used during the test)

< Blue circles : dispersions outliers 
à for these genes the statistical 
test is based on the empirical 
variance to be more conservative



Definition of a decision rule

< p-value
< Probability of obtaining a statistic at least as extreme as the one 

that was actually observed, assuming that H0 is true

< Reject H0 if p-value < threshold
< Common threshold = 0.05
è the observed result would be highly unlikely under H0
But be careful : you perform multiple testing !



Multiple testing problem

< To identify significantly differentially expressed genes
à As many tests as the number of genes (G)

< With a type I error a for each gene
< we expect to find Ga false positives
< i.e. Ga genes declared to be differentially expressed even if there are not
< e.g. G=30,000 genes a=0.05 à We expect to find 1,500 false positives
à Important to control the false positive rate when we make a lot of tests

< 2 points of views
< Individually consider the differentially expressed genes sorted according 

to a statistic
< Consider a list of differentially expressed genes, in which we would like to 

control the false positive rate
è Use a multiple testing correction



Multiple testing correction methods

< Family-Wise Error Rate (FWER)
< Probability to have at least one false positive
< e.g. FWER = 0.05 è 5% chances of having at least one false positive

< Bonferroni method
< Bonferroni

pg_adjusted = min (Gpg, 1)
è Each test is performed with a type I error a/G

< Very conservative method (Ge et al. TEST 2003;12(1):1-77)



Multiple testing correction methods

< False Discovery Rate (FDR)
< Expected proportion of false positives among genes declared as 

differentially expressed
< e.g. FDR = 0.05 è We expect to find 5% of false positives among 

genes declared as significantly differentially expressed

< Benjamini and Hochberg method 
(Journal of the R. Stat. Soc., Series B 57 (1): 125–133)
< Calculation of adjusted p-values that allows to control the FDR

3. How many genes are significantly differentially expressed 
between siMitf and siLuc (FDR<0.05) ?



Independant filtering

< Goal : filter out those tests from the procedure that have no, 
or little chance of being significant, without even looking at 
their test statistic 
à Results in increased detection power at the same type I error 

< Genes with very low counts are not likely to be significantly 
differentially expressed typically due to high dispersion 
à DESeq2 defines a threshold on the mean of the normalized 

counts irrespective of the biological condition 
à Independent because the information about the variables in the 

design formula is not used (Love et al. Genome Biol. 2014;15:550)

Genes discarded by the independent filtering
à adjusted p-value = NA in the results table



Visualization of significantly differentially 
expressed genes : MA-plot

Red dots : FDR < 0.05
Triangles : features having a too low/high log2FC to be displayed on the plot



Visualization of significantly differentially 
expressed genes : volcano plot

Red dots : FDR < 0.05



Differential analysis results

< The format of the 3 tables is the same
< Download the file siMitfvssiLuc.up.txt
< Open this file with Excel

Tabulated
text files



Differential analysis results

à 1 line per gene (Id = Ensembl gene id)
à 23 columns



Differential analysis results

< Raw read counts in each sample 

< Rounded normalized counts in each sample

< Mean of normalized counts over all samples

< Rounded mean of normalized counts over siLuc/siMitf samples

< Expression fold change = 2log2FoldChange

< log2FoldChange estimated by the generalized linear model
< Reflects the differential expression between siMitf and siLuc
< ~0 à similar gene expression in both conditions
< >0 à over-expressed gene (siMitf > siLuc)
< <0 à under-expressed gene (siMitf < siLuc)



log2 fold-change (LFC) shrinkage

< To improve stability and interpretability of LFC estimates
< High variance of LFC for genes with low read counts

< Count data à ratios are inherently noisier when counts are low
< Shrinkage of LFC estimates toward zero

< Shrinkage is stronger when the information for a gene is low 
(e.g. counts are low or dispersion is high)

< Avoids that these values, which otherwise would frequently be 
unrealistically large, dominate the top-ranked LFC

< Shrunken LFC offer a more reproducible quantification of 
transcriptional differences than standard LFC (Love et al. Genome Biol. 2014;15:550)

shrinkage



Differential analysis results

< p-value and p-value adjusted for multiple testing

< Dispersion parameter estimated from gene counts
< i.e. black dots on dispersion plot

< Dispersion parameter estimated from the model
< i.e. red dots on dispersion plot

< Maximum a posteriori dispersion parameter
< i.e. blue dots on dispersion plot

< Final dispersion parameter used to perform the test
< i.e. blue dots and circles on dispersion plot



Differential analysis results

< Convergence of the coefficients of the model (True of False)
< For siMitf project the model converges for all genes

< Maximum Cook’s distance of the gene
< If the gene has been detected as a count outlier 

< DESeq2 automatically flags genes which contain a high Cook’s 
distance for samples which have 3 or more replicates

< Therefore = NA for Mitf project
< Cook’s distance

< Measures of how much a single sample is influencing the fitted coefficients 
for a gene 

< Large value of Cook’s distance is intended to indicate an outlier count 


