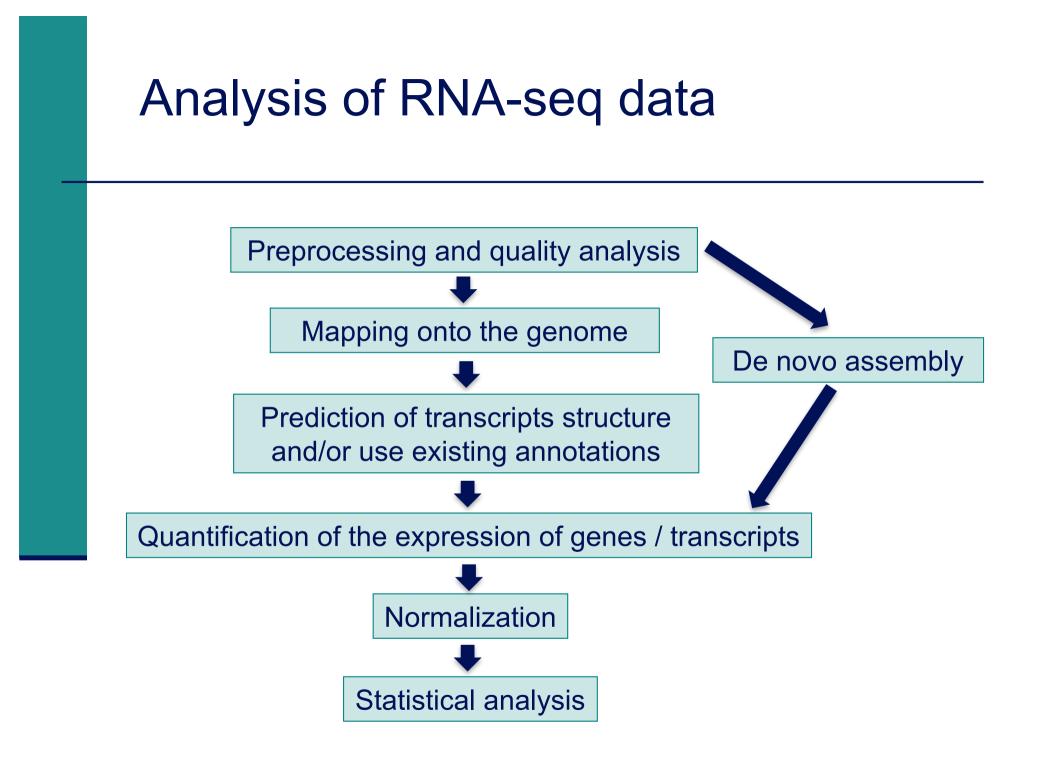
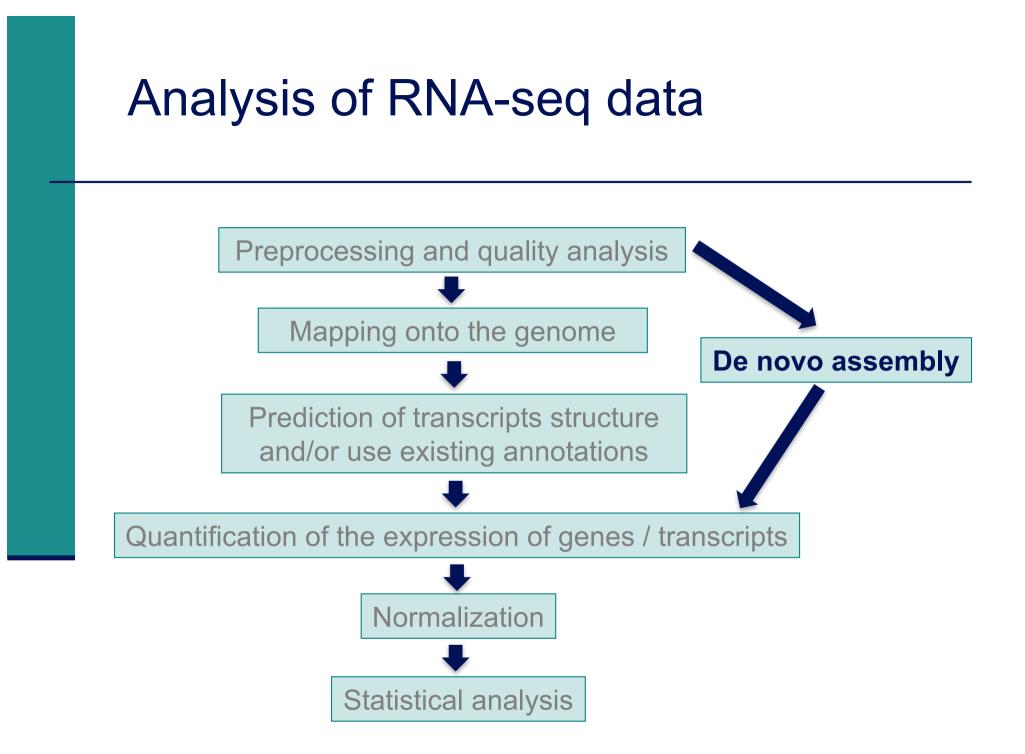
Analysis of RNA-seq data

Céline Keime keime@igbmc.fr





De novo transcriptome assembly

Purpose

- Analyse transcriptome on organisms without reference genome
- Detect chimeric transcripts from chromosomal rearrangements
- Read coverage need to be high enough to build contigs

Contig : set of overlapping sequences that together represent a DNA region

- Read (known sequence)
- Roughly known length but not known sequence

Consensus sequence

- Contig 1 Contig 2
- Challenges (as for genome assembly)
 - Repetitive regions, sequencing errors
- And more challenges specific to transcriptome assembly
 - Transcriptome coverage highly dependent on gene expression
 - Ambiguities in transcriptome assembly due to alternative splicing, alternative promoter usage, alternative polyA, overlapping transcripts

Programs for de novo transcriptome assembly

Different programs

- Velvet/Oases (Shulz et al. Bioinformatics 2012;28(8):1086-1092)
- Trans-ABySS (Robertson et al. Nature methods 2010; 7:909–912)
- Trinity (Haas et al. Nature Protocols 2013; 8:1494–1512)

Comparisons

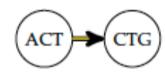
- On Illumina data : Zhao et al. (BMC Bioinformatics 2011; 12(14):S2)
- Which method will perform best is a function of read length, sequencing coverage and transcriptome complexity

De novo transcriptome assembly : general method

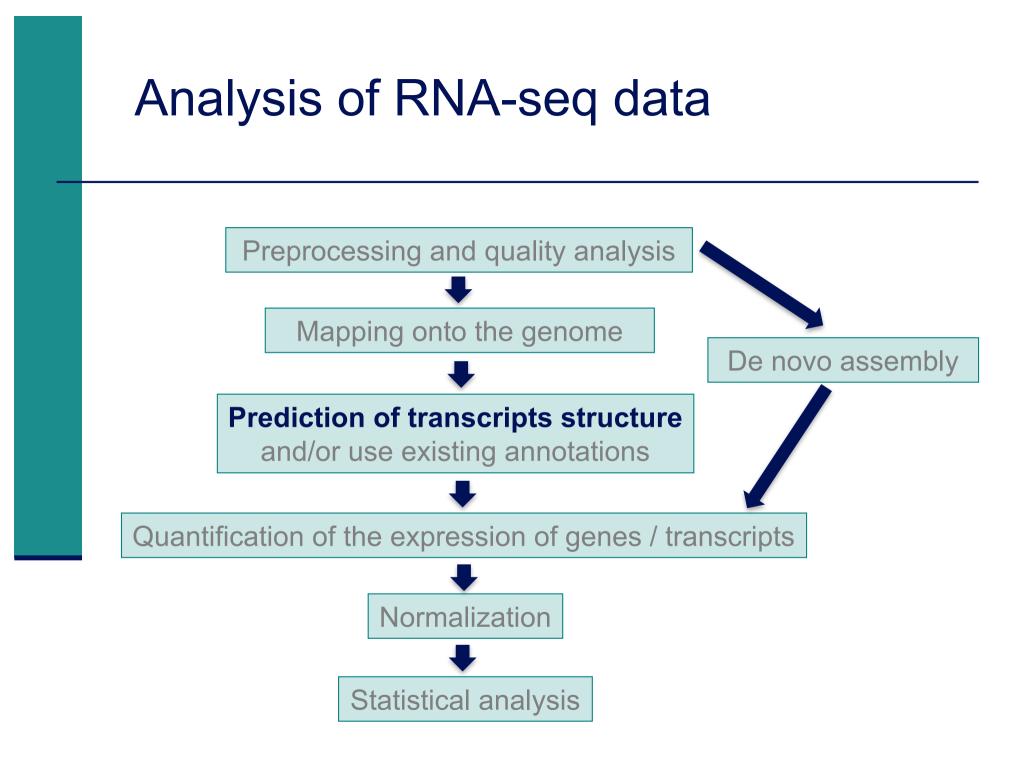
Breaks reads into k-mers (short sub-sequences of length k)

e.g. 1 read = ACTG, k=3 → k-mers = ACT, CTG

- Arranges k-mers into a graph structure (De Brujn graph)
 - Nodes : all sub-sequences of length k present in the sample
 - Arcs : link nodes to represent all sequences present in the sample

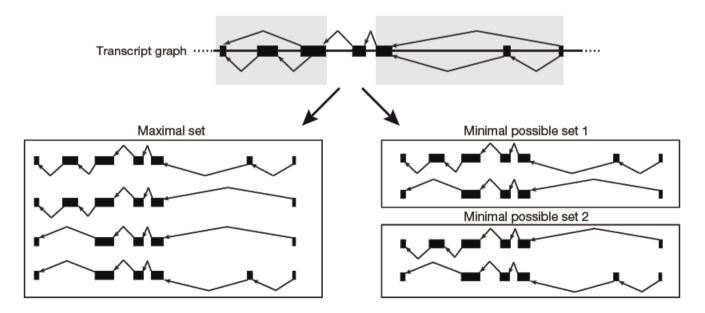


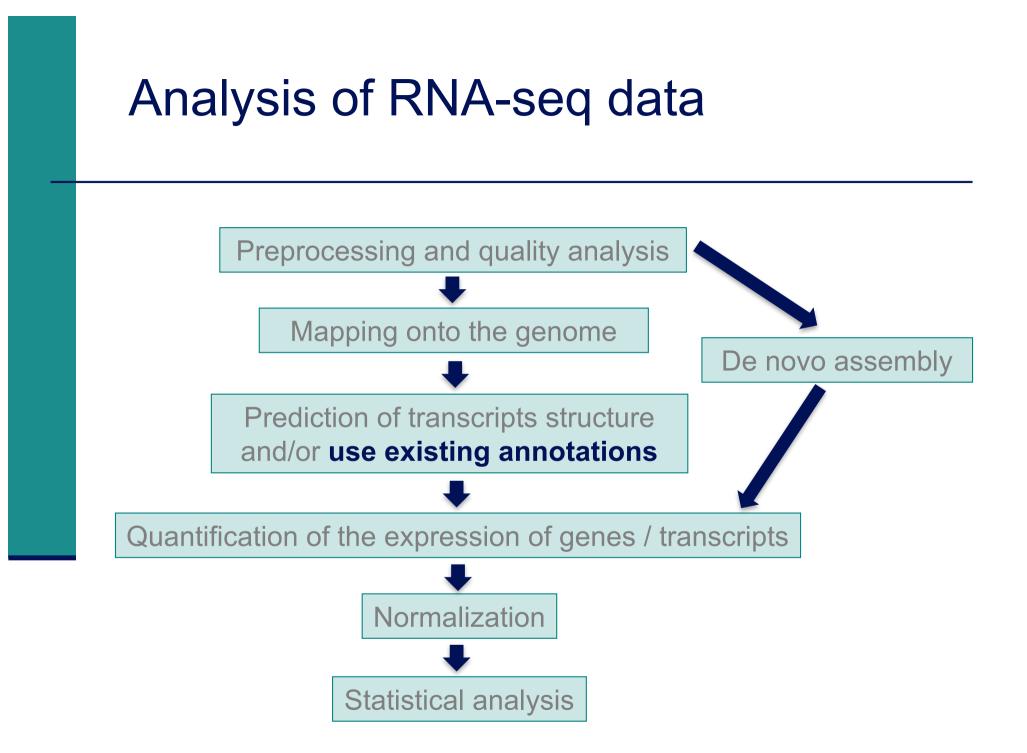
- Parse graph in order to create contigs
 - Look at the coverage to decide to follow a path or to remove it in order to avoid sequencing errors
- Choice of k-mer length greatly influence result of the assembly
- Functional annotation of contigs (with Gene Ontology e.g. Blast2GO, screen for Open Reading Frames, for known protein domains, ..)



Genome-guided assembly methods

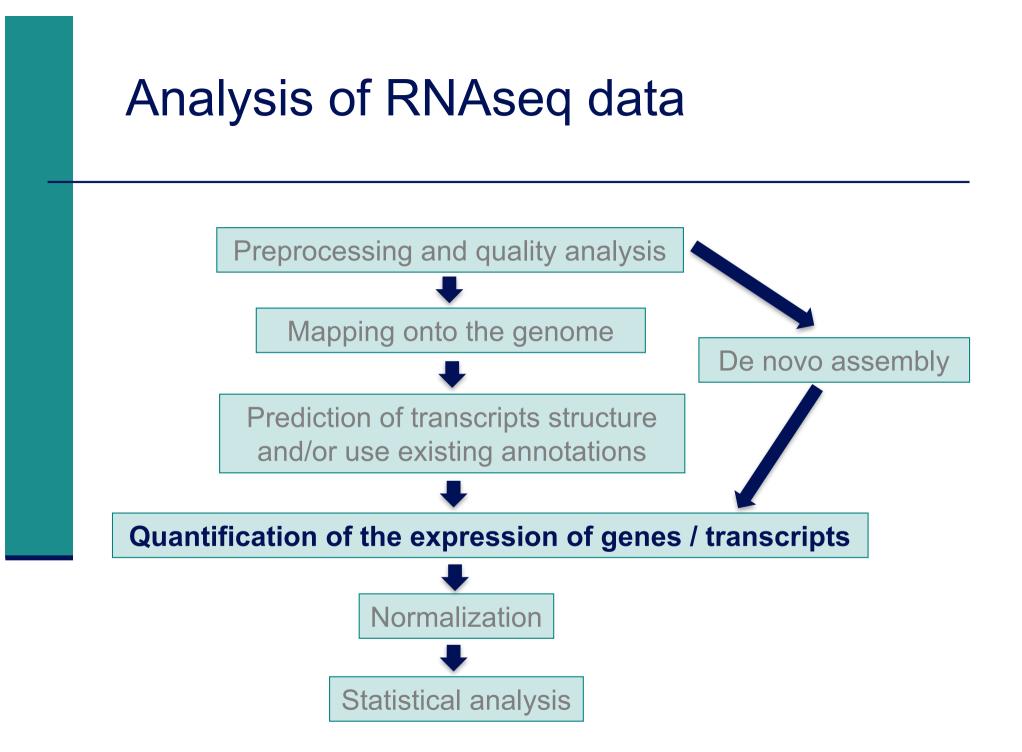
- Use spliced reads to reconstruct the transcriptome
- 1. Build a transcriptome assembly graph
- 2. Parse the graph into transcripts (1 path = 1 isoform)
 - → Cufflinks reports the minimal number of compatible isoforms i.e. a minimal number of isoforms such that all reads are included in at least one path → uses read coverage to decide which combination of isoforms is most likely to originate from the same RNA (Trapnell et al. Nature Biotechnology 2010;28(5):511-5)





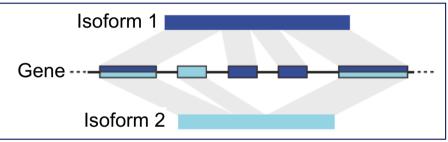
Genome annotations

- Generally provided in a GTF/GFF file
 - cf. course on read mapping
- Different annotations sources : AceView, Ensembl, UCSC, Refseq...



Gene-level quantification

How to summarize expression level of genes with several isoforms ?



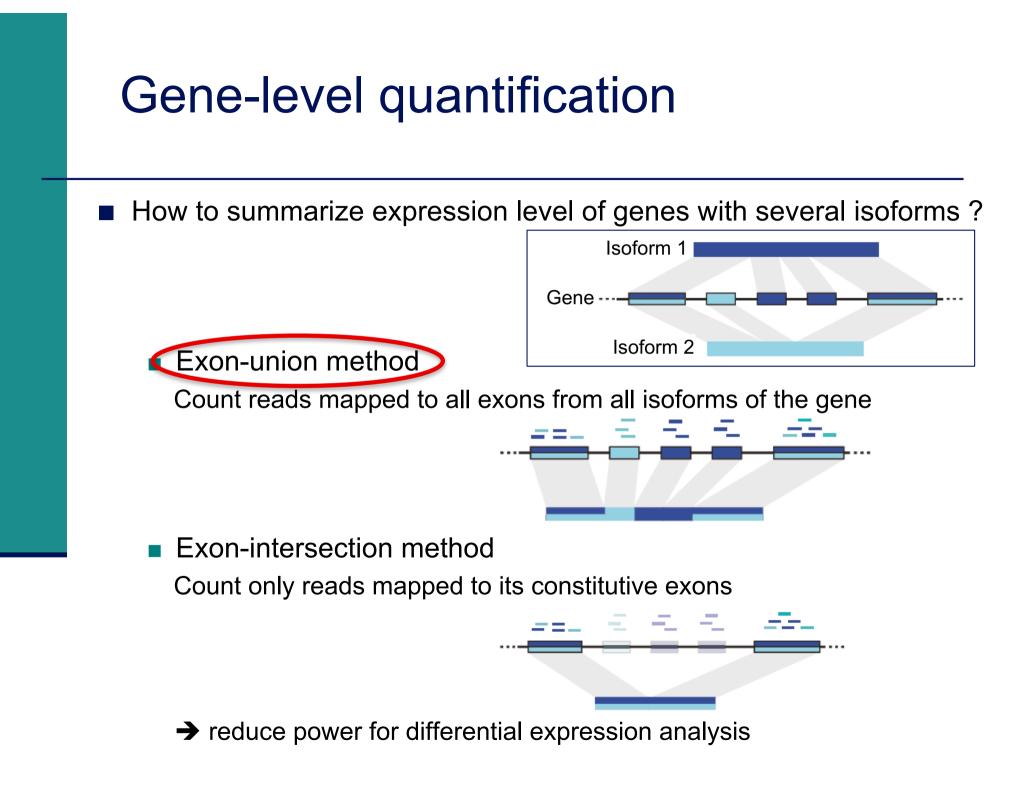
Exon-union method

Count reads mapped to all exons from all isoforms of the gene

Exon-intersection method

Count only reads mapped to its constitutive exons

 \rightarrow reduce power for differential expression analysis



Gene-level quantification :

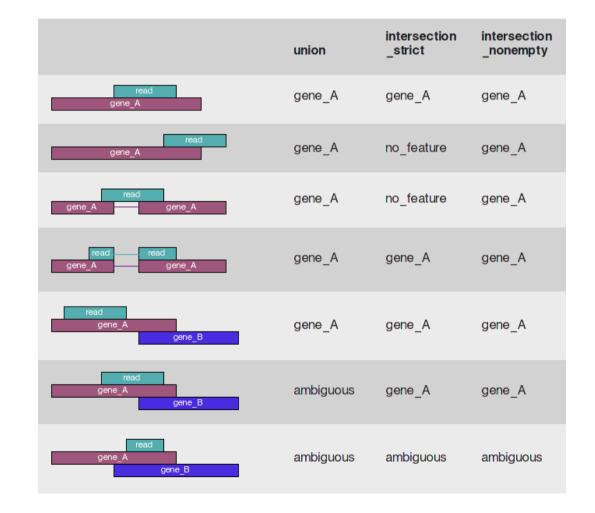
HTSeq-count Anders et al., Bioinformatics 2015;31(2):166-9

- How to deal with multiple aligned reads ?
 - Multi-mapped reads are discarded rather than counted for each feature because the primary intended use case for htseq-count is differential expression analysis
 - i.e. comparison of the expression of the same gene across samples
 - Why?
 - Consider 2 genes with multiple aligned reads on these genes
 - Discard multiple aligned reads
 - \blacksquare \rightarrow undercount the total output of these 2 genes
 - but the expression ratio between conditions will still be correct because we discard the same fraction of reads in all samples
 - If we counted these reads for both genes
 - $\blacksquare \rightarrow$ differential expression analysis might find false positives

Even if only one of the gene is differentially expressed, multimapped reads would be counted for both genes, giving the wrong appearance that both genes are differentially expressed

Gene-level quantification : HTSeq-count

How to deal with overlapping features ?



HTSeq-count

Input

- Alignment file (SAM/BAM)
- Annotation file (GFF) with the same chromosome names as in the alignment file

Options

Mode to handle reads overlapping more than one feature.

м	0	d	e

Union

Stranded

Reverse

cf	previous	alida
CI.	previous	silde

Reverse for a directional protocol that generates reads in the opposite strand as the Specify whether the data is from a strand-specific assay. 'Reverse' means yes with reversed strand interp transcribed one **No** for a non-directional protocol

Skip all reads with alignment quality lower than the given minimum value

Feature	type
---------	------

Minimum alignment quality

exon

10

Feature type (3rd column in GFF file) to be used. All features of other types are ignored. The default, suitable for RNA-Seq and Ensembl GT exon.

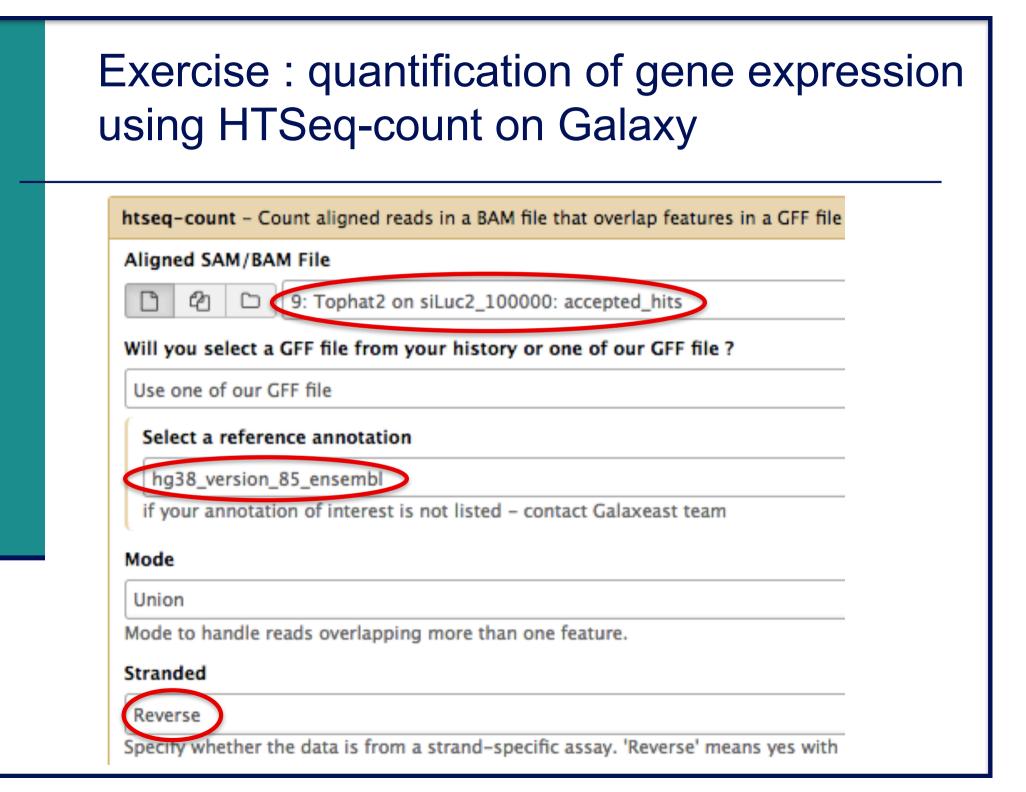
ID Attribute

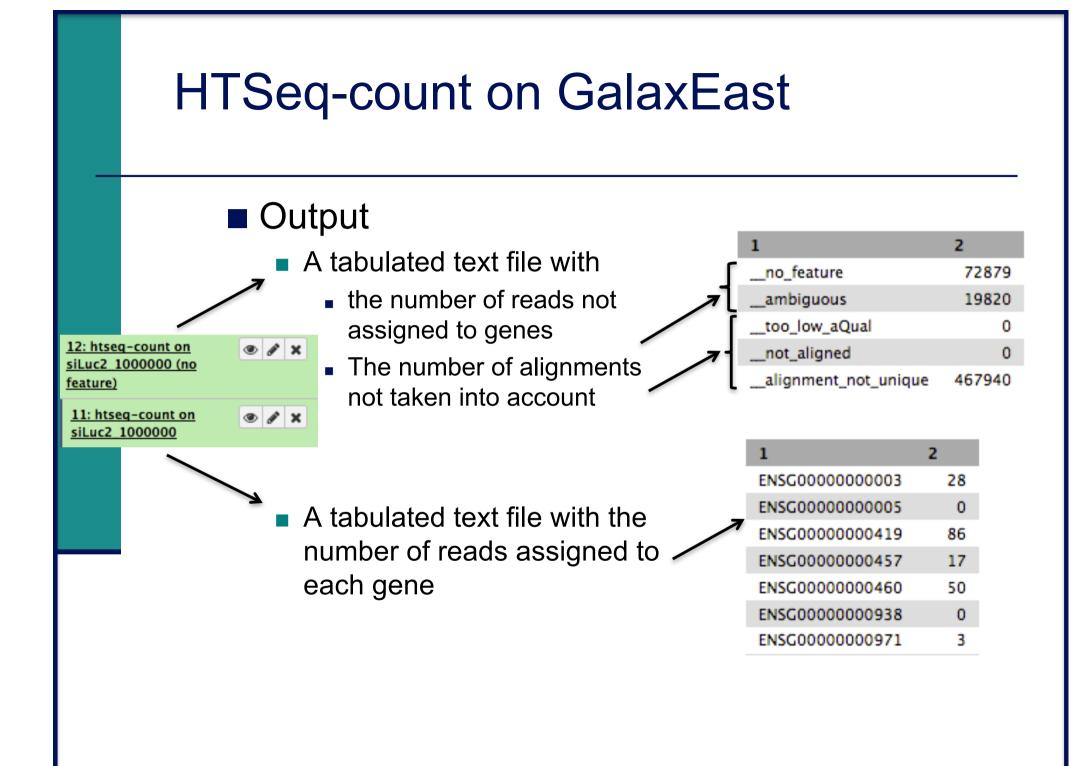
gene_id

GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the same feature. The feature ID is used to identity the counts in the output table. All features of the specified type MUST have a value for this attribute. The default, suitable for RNA-SEq and Ensembl GTF files, is gene_id.

Exercise : quantification of gene expression using HTSeq-count on Galaxy

- Lauch HTSeq-count to quantify gene expression on siLuc2_1000000 sample
- Inputs
 - Alignment file you obtained with Tophat
 - Ensembl release 85 annotations





HTSeq-count

Results on siLuc2_1000000

- 1. Among uniquely aligned reads, what is the proportion of assigned, no feature and ambiguous reads ?
- Calculate the number of uniquely aligned reads
- What is the number of no feature reads ? Calculate the corresponding proportion
- What is the number of ambiguous reads ? Calculate the corresponding proportion
- → Calculate the proportion of assigned reads

HTSeq-count

Results on whole dataset

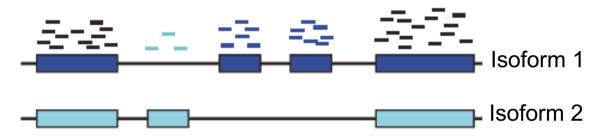
- Gene quantification results on the whole dataset are available in
 - Shared Data \rightarrow Data Libraries \rightarrow RNAseq \rightarrow quantification

Summary of quantification results

Sample name	% of assigned reads	% of no feature reads	% of ambiguous reads
siLuc2	88.71	8.87	2.41
siLuc3	88.87	8.64	2.49
siMitf3	88.21	9.32	2.47
siMitf4	89.49	8.12	2.39

Transcript-level quantification

Some reads cannot be assigned unequivocally to a transcript

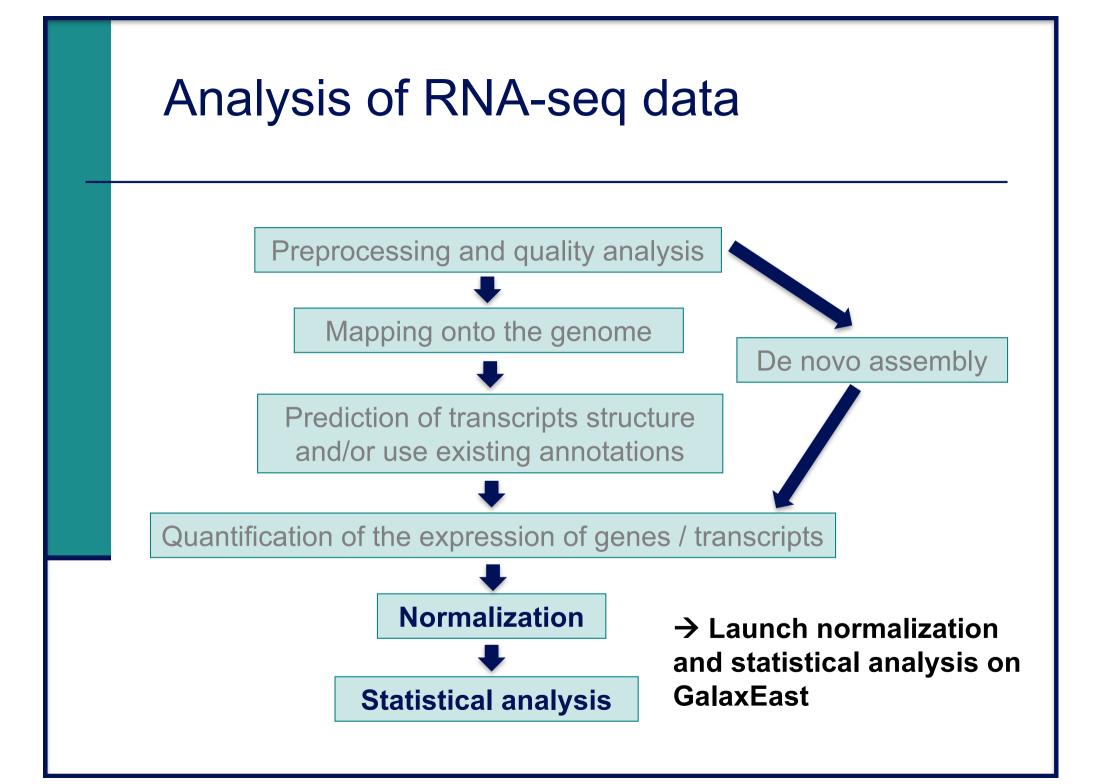


Alexa-seq (Griffith et al. Nature methods 2010;7(10):843-7)

Counts only reads that map uniquely to a single isoform

➔ Fails for genes that do not contain unique exons from which to estimate isoform expression

- Cufflinks (Trapnell et al. Nature Biotechnology 2010;28(5):511-5)
 MISO (Nature Mathods 2010 Dec;7(12):1009-15)
 - Construct a likelihood function that models the sequencing process
 - Calculate isoforms abundance estimates that best explain reads observed in the experiment



Exercise : statistical analysis using SARTools on GalaxEast

SARTools

- R package dedicated to differential analysis of RNA-seq data
- Allows to
 - Generate descriptive and diagnostic graphs
 - Run differential analysis with DESeq2 or edgeR package
 - Export the results into tab-delimited files
 - Generate a report
- Does not replace DESeq2 or edgeR but simply provides an environment to use some of their functionalities
- > We will use SARTools with DESeq2

Exercise : statistical analysis using SARTools on GalaxEast

Input files for SARTools

- A zip file containing raw counts files
- A design file describing the experiment

label	files	group
slc1	<pre>count_file_sample1_cond1.txt</pre>	cond1
s2c1	<pre>count_file_sample2_cond1.txt</pre>	cond1
s1c2	<pre>count_file_sample1_cond2.txt</pre>	cond2
s2c2	<pre>count_file_sample2_cond2.txt</pre>	cond2

Design file for the analysis we would like to perform :

label	files	group
siLuc2	<pre>siLuc2_htseq.txt</pre>	siLuc
siLuc3	<pre>siLuc3_htseq.txt</pre>	siLuc
siMitf3	<pre>siMitf3_htseq.txt</pre>	siMitf
siMitf4	<pre>siMitf4_htseq.txt</pre>	siMitf

These files can be prepared using the tool
 "Preprocess files for SARTools"

Exercise : statistical analysis using SARTools on GalaxEast

Launch statistical analysis using SARTools DESeq2

- 1. Import raw count files
- 2. Prepare files for SARTools
- 3. Launch SARTools DESeq2

Exercise 1. Import raw counts files					
on the whole				•	
	Data Libraries -> CNF	Misuellastian II.	\rightarrow RNAseq \rightarrow C	uantification	
DATA LIBRARIES « 0 Details	1 2 >> showing <u>10</u> of 10 items include		Ito History		
Libraries / CNRS training /					
<u>name</u> 12	description	data type size	e time updated (UTC)		
htseq-count on siLuc	2	tabular 1.0	MB 2016-09-16 02:03	۹. 😁	
🗋 🗌 <u>htseq-count on siLuc</u>	2 1000000	tabular 1.0	MB 2016-09-16 02:03	•	
htseq-count on siLuc summary	2 1000000	tabular 101	bytes 2016-09-16 02:03	@ ¥	
htseq-count on siLuc	2 summary	tabular 106	bytes 2016-09-16 02:03	a, 👹	
htseq-count on siLuc	3	tabular 1.0	MB 2016-09-16 02:03	a. 🗃	
htseq-count on siLuc	3 summary	tabular 106	bytes 2016-09-16 02:03	a, 🗃	
L view view view view view view view view	<u>3</u>	tabular 1.0	MB 2016-09-16 02:03	۹. 😁	
C <u>htseq-count on siMit</u>	-		bytes 2016-09-16 02:03	a, *	
htseq-count on siMit			MB 2016-09-16 02:03	۹. 🐨	
htseq-count on siMit	4 summary	tabular 107	bytes 2016-09-16 02:03	a, 🐮	

Exercise 2. Prepare files for SARTools

■ Use the tool "Preprocess files for SARTools"

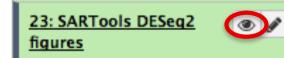
Add a blocking factor
Yes No
Adjustment variable to use as a batch effect (default no).
Group
1: Group
Group name
siLuc
Raw counts
1: Raw counts
Replicate raw count
□ 4 □ 6: htseq-count on siLuc2
Replicate label name
siLuc2
You need to specify an unique label name for your replicates.
2: Raw counts
Replicate raw count
The seq-count on siLuc3
Replicate label name
siLuc3
You need to specify an unique label name for your replicates.
+ Insert Raw counts

Exercise2. Prepare files for SARTools

Gr	oup name
si	iMitf
Ra	aw counts
1:	: Raw counts
	Replicate raw count
	C 8: htseq-count on siMitf3
	Replicate label name
Ć	siMitf3
1	You need to specify an unique label name for your replicates.
2:	: Raw counts
	Replicate raw count
	C 4 (9: htseq-count on siMitf4
	Replicate label name
(siMitf4
1	You need to specify an unique label name for your replicates.
+	Insert Raw counts
F II	nsert Group

Exercise 3. Launch SARTools DESeq2

SARTools DESeq2 Compare two or more biological conditions in a RNA-Seq framework with DESeq2 (Galaxy Version 0.99.2)
Name of the project used for the report
Analysis_siMitf_siLuc
(-P,projectName)
Name of the report author
keime
(-A,author)
Design / target file
🗈 🔁 🗅 14: design file for SARTools (on data 13, data 12, and others) -
(-t,targetFile) See the help section below for details on the required format.
Zip file containing raw counts files
🗈 🔁 🗅 C 15: counts files for SARTools (on data 13, data 12, and others) 🗸
(-r,rawDir) See the help section below for details on the required format.
Have you a header in your count files ?
No
The tool needs no header in the input files, so if there is an header, select yes, and it removes it during the processing.
Names of the features to be removed
alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual
(-F,featuresToRemove) Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are 'alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual'.
Factor of interest
group
(-v,varInt) Biological condition in the target file. Default is 'group'.
Reference biological condition
siLuc
(-c,condRef) Reference biological condition used to compute fold-changes, must be one of the levels of 'Factor of interest'.
Advanced Parameters
Hide
✓ Execute

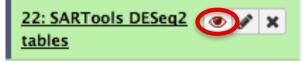


Figures Galaxy Tool SARTools_DESeq2

Run at 22/09/2017 17:11:06

Figures available for downloading

Output File Name (click to view)	Size
MAPlot.png	53.8 KB
PCA.png	19.3 KB
<u>barplotNull.png</u>	11.2 KB
barplotTotal.png	10.9 KB
cluster.png	6.0 KB
countsBoxplots.png	16.7 KB
densplot.png	20.3 KB
diagSizeFactorsHist.png	27.1 KB
diagSizeFactorsTC.png	7.1 KB
dispersionsPlot.png	51.3 KB
majSeq.png	14.7 KB
pairwiseScatter.png	13.3 KB
rawpHist.png	11.4 KB
volcanoPlot.png	32.3 KB



Tables

Galaxy Tool SARTools_DESeq2

Run at 22/09/2017 17:11:06

Tables available for downloading

Output File Name (click to view)

siMitfvssiLuc.complete.txt _____ All genes

> Only significant up-regulated genes (i.e. more expressed in siMitf than in siLuc)

Report

• Gives details about the methodology, the different steps and the results

21: SARTools DESeq2

report

 Displays all the figures produced and a summary of the differential analysis results

Table of contents

- 1. Introduction
- 2. Description of raw data
- 3. Variability within the experiment: data exploration
- 4. Normalization
- 5. Differential analysis
- 6. R session information and parameters
- 7. Bibliography
- Data exploration and visualisation
 - Essential step before any analysis
 - Allows data quality assessment and control
 - Eventually leads to remove data with insufficient quality

Report

Description of raw data

labelfilesgroupsiLuc2siLuc2_htseq.txtsiLucsiLuc3siLuc3_htseq.txtsiLucsiMitf3siMitf3_htseq.txtsiMitf3siMitf4siMitf4_htseq.txtsiMitf4Table 1: Data files andassociated biological conditions.

there are 57992 features in the count data table. siLuc2 siLuc3 siMitf3 siMitf4

ENSG0000000003	1254	1334	1258	1340
ENSG0000000005	0	0	0	0
ENSG0000000419	3368	3566	3448	3534
ENSG0000000457	643	631	624	735
ENSG0000000460	2394	2692	1405	1698
ENSG0000000938	0	0	0	0

Table 2: Partial view of the count data table.

	siLuc2	siLuc3	siMitf3	siMitf4
Min.	0	0	0	0
1st Qu.	0	0	0	0
Median	0	0	0	0
Mean	567	602	575	674
3rd Qu.	40	42	41	47
Max. 280486 273055 319322 366354				
Table 3: Summary of the raw counts.				

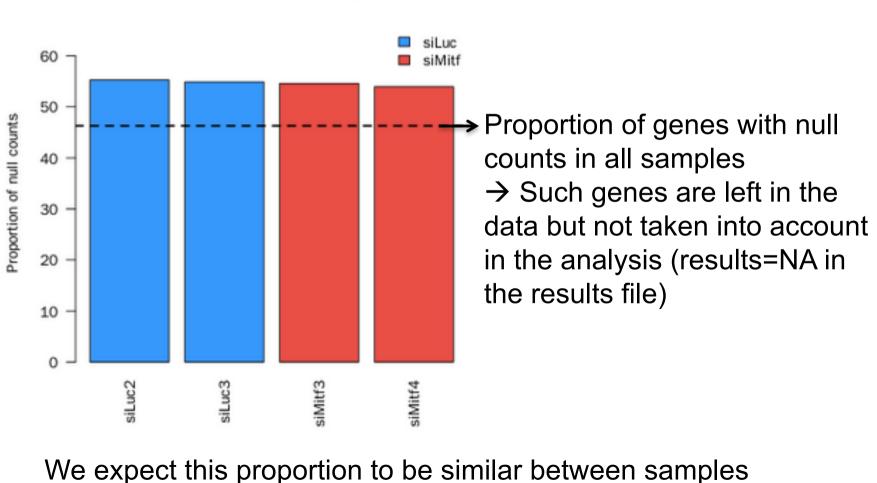
Total read count per sample

siluc leton le

Total read count per sample

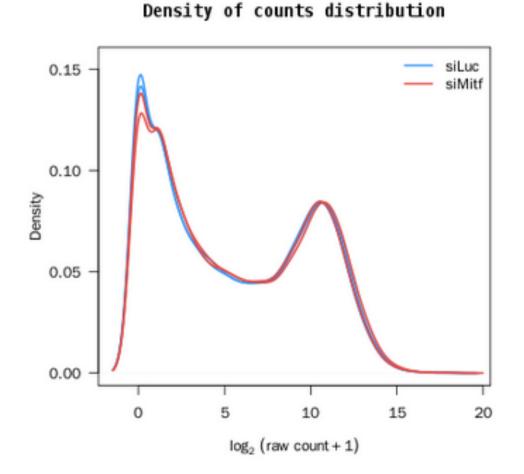
Different between samples, as expected \rightarrow normalization needed More difficult when major differences between samples

Proportion of null counts per sample



Proportion of null counts per sample

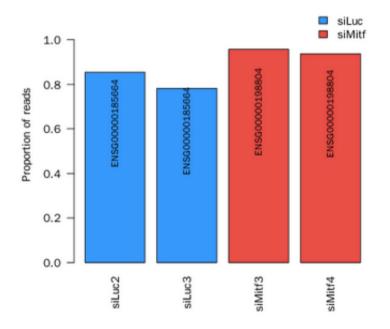
Density distribution of read counts



We expect replicates to have similar distributions

Proportion of reads from most expressed genes

Proportion of reads from most expressed sequency



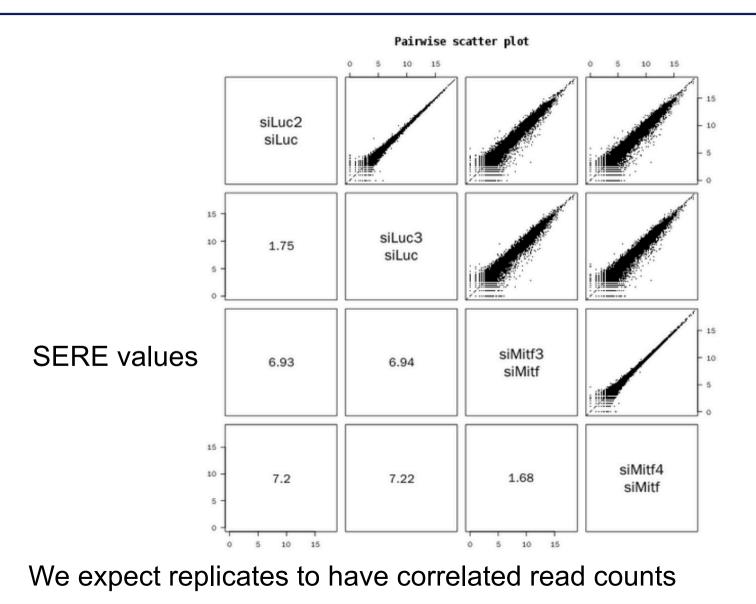
siLuc2 siLuc3 siMitf3 siMitf4

ENSG00000185664	0.85	0.78	0.70	0.72
ENSG00000198886	0.79	0.73	0.85	0.92
ENSG00000198804	0.78	0.73	0.96	0.94
ENSG00000107165	0.64	0.59	0.95	0.93

Table 4: Percentage of reads associated with the sequences having the highest counts.

We expect these high count features to be the same across replicates

Pairwise comparison of samples



SERE coefficient

Simple Error Ratio Estimate (Schulze et al. BMC Genomics 2012;13:524)

SERE = $\frac{\text{Observed standard deviation between two samples}}{\text{Value that would be expected from an ideal experiment}}$

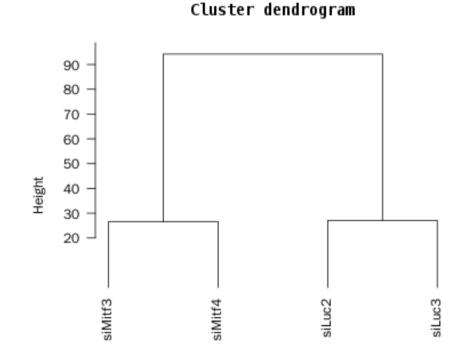
- SERE = 0 → sample duplication
- SERE = 1 → technical replication
- SERE > 1 → biological variation
- SERE ↑ → Similarity ↓

Data transformation

- Many methods for exploratory data analysis (clustering, PCA) work best for data that generally have the same range of variance at different ranges of mean values
- However this is not the case for RNA-seq data
- e.g. PCA on RNA-seq data
- \rightarrow result typically depends only on the few most strongly expressed genes because they show the largest absolute differences between samples
- Solution \rightarrow stabilize variance across the mean
 - VST (variance-stabilizing transformation) : mean-variance relationship estimated from the data (Anders et al. Genome Biology 2010, 11:106)
 - rlog (regularized log-transformation) : fit a generalized linear model from the data, more robust when size factors vary widely (Love et al. Genome Biology 2014, 15:550)
 - Values approximately homoskedastic (having constant variance along the range of mean values)

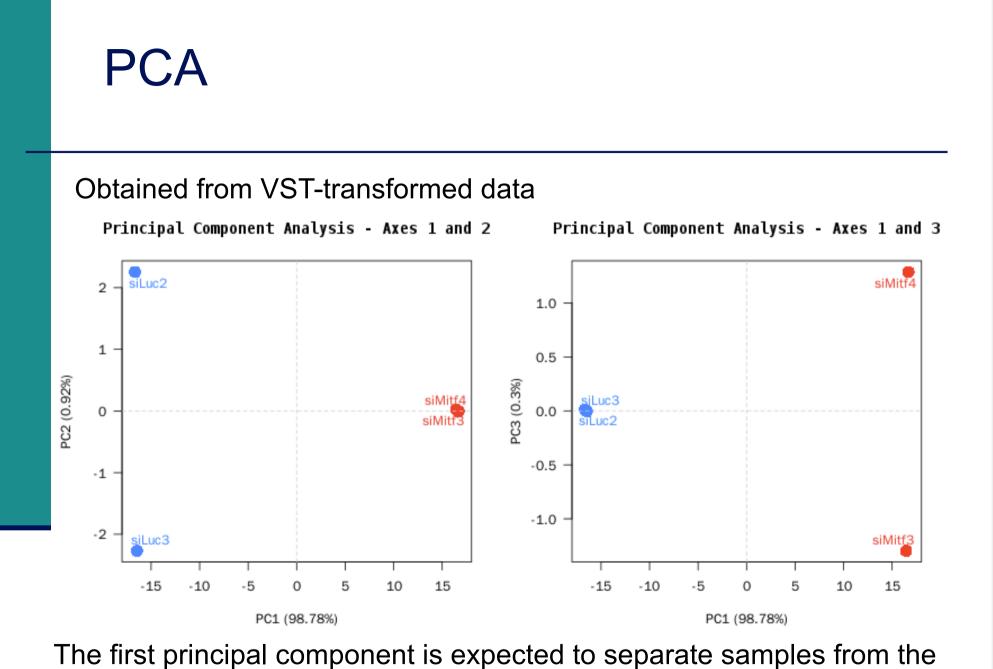
Samples clustering

Obtained from VST-transformed data



Method: Euclidean distance - Ward criterion hclust (*, "ward.D")

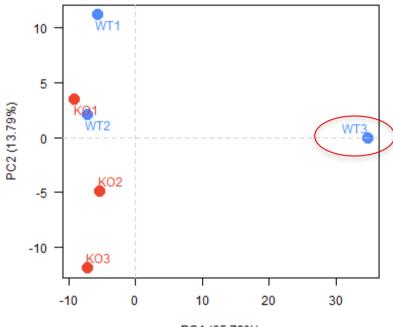
We expect this dendrogram to group replicates and separate biological conditions



The first principal component is expected to separate samples from the different biological conditions (i.e. corresponds to the main source of variance in the data)

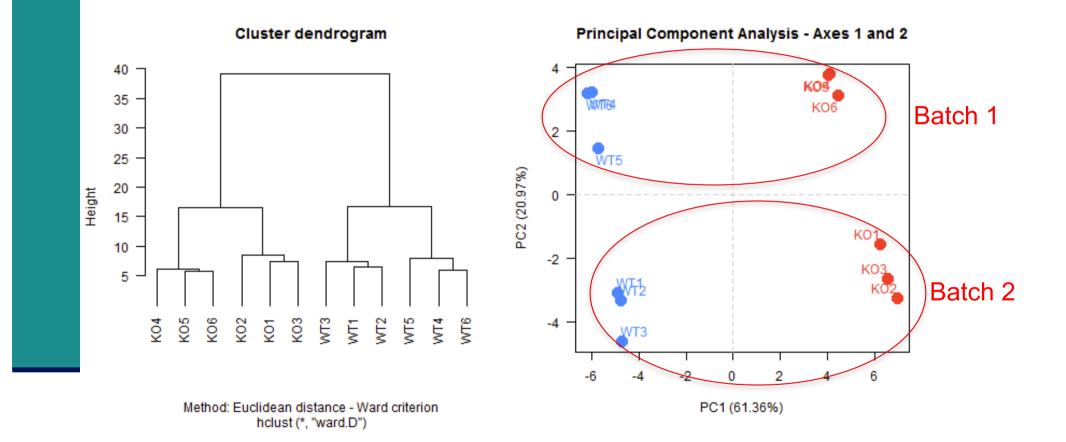
Data exploration on another dataset : outlier sample

Principal Component Analysis - Axes 1 and 2



PC1 (65.79%)

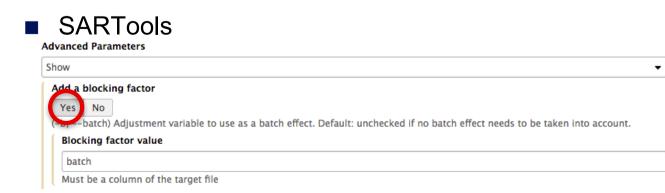
Data exploration on another dataset : batch effect

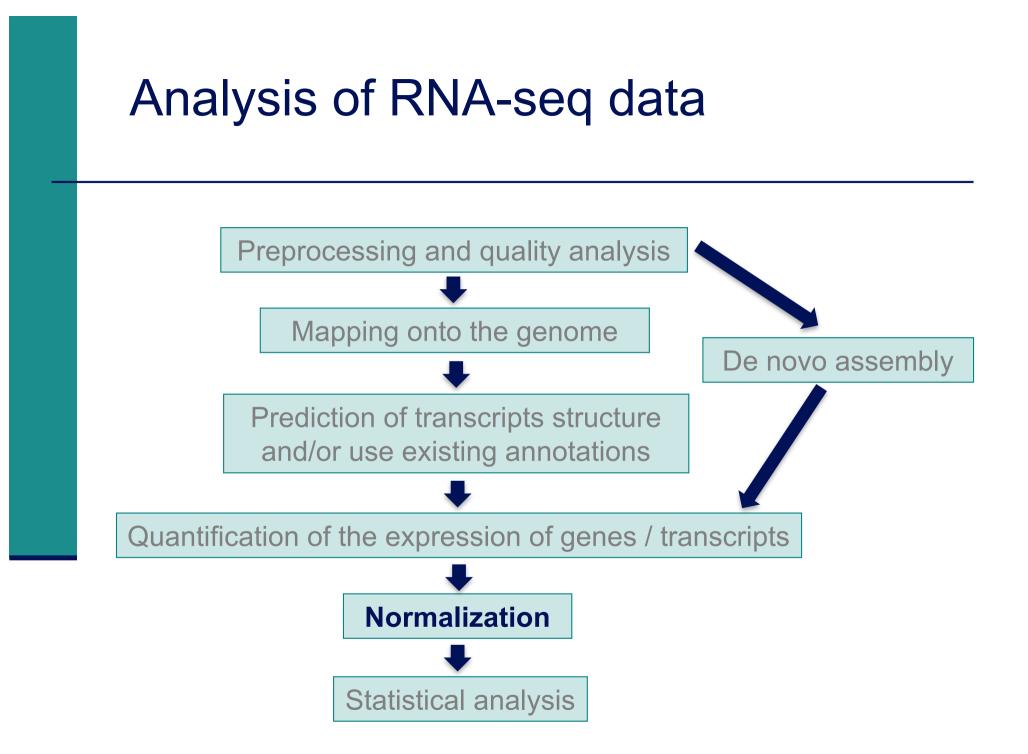


 \rightarrow Take into account this batch effect in statistical analysis

Preprocess files for SARTools

Preprocess files for SARTools generate design/target file and archive for SARTools inputs (Galaxy Version 0.1.0)	ions
Add a blocking factor Yes No Action Month Add Add Add Add Add Add Add Add Add Ad	
level	
1: level	
Group name	
group1	
Raw counts	
1: Raw counts	
Replicate raw count	
Image: Contract of the seq count on siLuc2	•
Replicate label name	
replicate1	
You need to specify an unique label name for your replicates.	
Blocking factor	
day1	





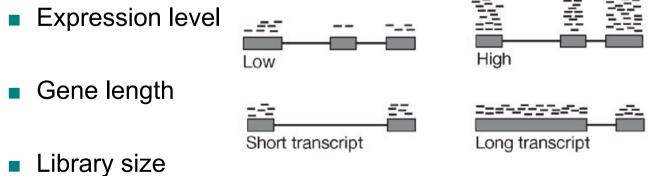
Normalization : why ?

To compare RNA-seq libraries

• with different sizes, eg :

Sample name	Total number of reads
siLuc2	43,672,265
siLuc3	46,565,834
siMitf3	43,985,979
siMitf4	51,348,313

To compare the expression level of several genes within a library Indeed read counts depend on



Different normalization methods

- Based on distribution adjustment
 - Total read count
 - Motivation
 - Higher library size → higher counts
 - Method

Divide counts by total number of reads

- Upper quartile (Bullard et al. BMC Bioinformatics 2010;11,94), Median
 - Motivation

Total read count is strongly dependent on a few highly expressed transcripts

Method

Divide counts by the upper quartile/median of the counts different from 0

- Quantile (Bolstad et al. Bioinformatics 2003; 19:185–93)
 - Assumption
 - Read counts have identical distribution across libraries
 - Method

Count distributions are matched between libraries

Different normalization methods

Take into account gene/transcript length

- RPKM (Mortazavi et al. Nat Methods 2008;5:621–8), FPKM
- Reads (Fragments) per Kilobase per Million mapped reads

Assumption

- Read counts =f(expression level, gene length, library size)
- Method
 - Divide counts by gene length (kb) and total number of reads (million)
- Allows to compare expression levels between genes

Different normalization methods

Based on the "effective library size" concept

- Assumption
 - Most genes are not differentially expressed
- 2 methods
 - Trimmed Mean of M values (Robinson et al. Genome Biol. 2010;11:R25)
 - DESeq normalization (Anders et al. Genome Biol. 2010;11:R106)

Which normalization method to choose ?

Comparison on 4 real and 1 simulated dataset

Summary of comparison results

Method	Distribution	Intra-Variance	Housekeeping	Clustering	False-positive rate
TC	-	+	+	-	-
$\mathbf{U}\mathbf{Q}$	++	++	+	++	-
Med	++	++	-	++	-
DESeq	++	++	++	++	++
TMM	++	++	++	++	++
Q	++	-	+	++	-
RPKM	-	+	+	-	-

- : the method provided unsatisfactory results for the given criterion

- + : satisfactory results
- ++ : very satisfactory results

(Dillies et al. Brief. Bioinformatics 2013 Nov;14(6):671-83)

	lib1	lib2	lib3	lib j	lib n	n : number of samples to compare
gene1 gene2 gene3 gene4	468 45 2576 1678	475 56 560 1798	501 76 578 1867			
 gene i				X _{ij}		xij : number of reads for gene i in sample j

(Anders et al. Genome Biol. 2010;11:R106)

	lib1	lib2	lib3	lib j	lib n	n : number of samples to compare
gene1 gene2 gene3 gene4	468 45 2576 1678	475 56 560 1798	501 76 578 1867			
gene i				X _{ij}		xij : number of reads for gene i in sample j

Normalization factor for library j :

$$\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$$

→ Each value is divided by the geometric mean of its row
 → Normalization factor = median of all these ratios

	lib1	lib2	lib3	mean
gene1	468	475	501	m1=481.1263
gene2	45	56	76	m2=57.64187
gene3	2576	560	578	m3=941.2115
gene4	1678	1798	1867	m4=1779.271

Normalization factor for library j :

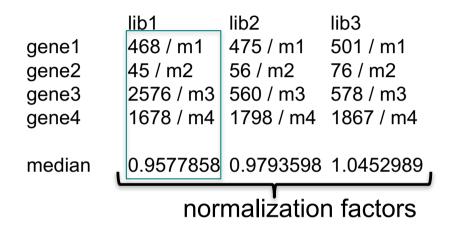
 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

	lib1	lib2	lib3	mean
gene1	468 / m1	475 / m1	501 / m1	m1=481.1263
gene2	45 / m2	56 / m2	76 / m2	m2=57.64187
gene3	2576 / m3	560 / m3	578 / m3	m3=941.2115
gene4	1678 / m4	1798 / m4	1867 / m4	m4=1779.271

Normalization factor for library j :

 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

➔ Underlying idea : non-differentially expressed genes should have similar read count across samples leading to a ratio of 1



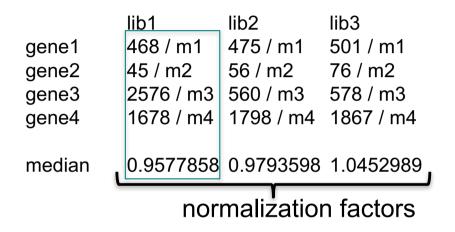
mean m1=481.1263 m2=57.64187 m3=941.2115 m4=1779.271

Normalization factor for library j :

 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

 \rightarrow Median of these ratios for a library \rightarrow estimate of the correction factor that should be applied to all read counts of this library

→ Normalized read counts = raw read counts / normalization factor



mean m1=481.1263 m2=57.64187 m3=941.2115 m4=1779.271

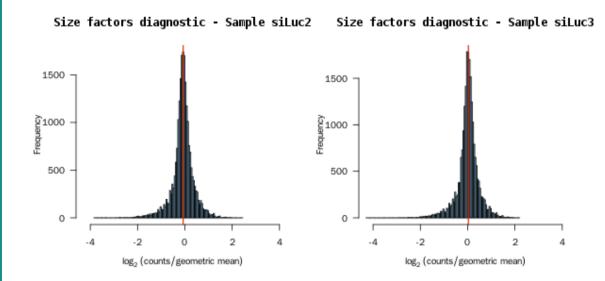
Normalization factor for library j :

 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

2. What are the values of these normalization factors for Mitf dataset ?

Diagnostic plot for the estimation of normalization factors

Size factors diagnostic - Sample siHitf4



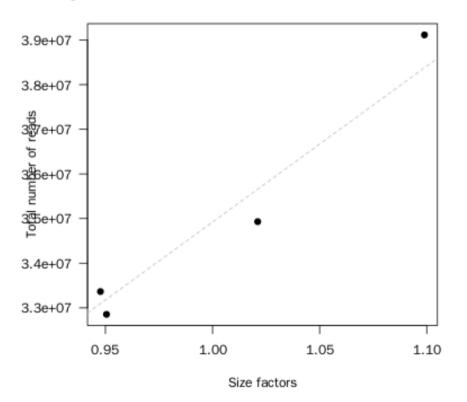
Size factors diagnostic - Sample siMitf3

3500 3000 3000 2500 ຣິີ 2000 2000 e 1500 1000 1000 500 0 0 -2 0 2 -2 0 2 - 4 log₂ (counts/geometric mean) log₂ (counts/geometric mean)

This histogram should be unimodal, with a clear peak at the value of the size factor (represented in red)

Total number of reads vs size factors

Diagnostic: size factors vs total number of read

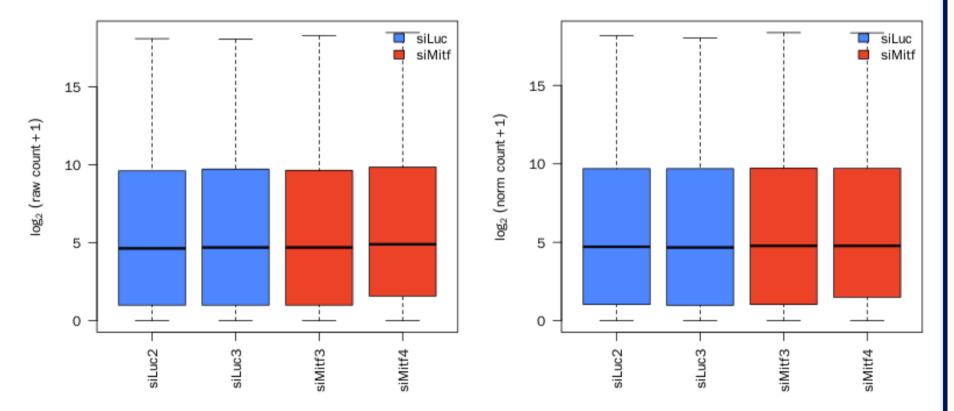


Normalization by total number of reads and DESeq size factors is not exactly the same, but very close for this dataset

Boxplots of raw and normalized read counts

Raw counts distribution

Normalized counts distribution

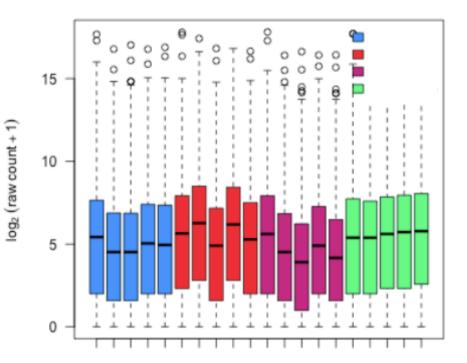


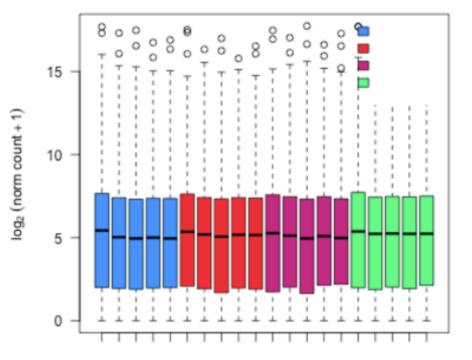
We expect normalization to stabilize distributions across samples

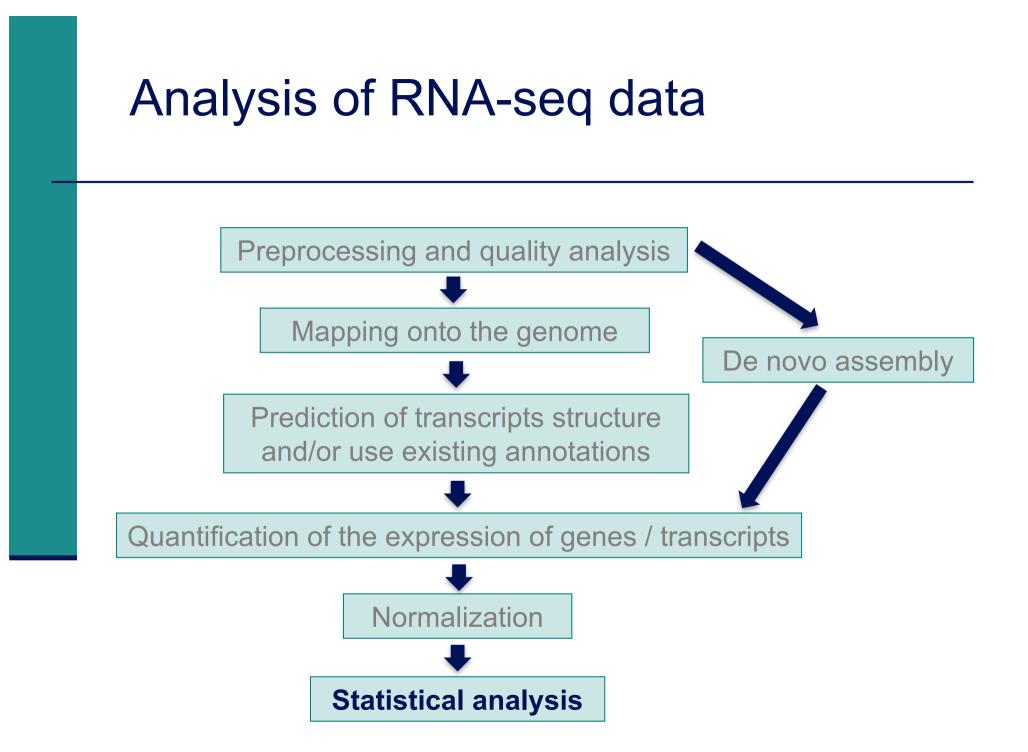
Boxplots of raw and normalized read counts on another dataset

Raw counts distribution

Normalized counts distribution







Search for significantly differentially expressed genes

- What is significant differential expression ?
 - The observed difference between conditions is statistically significant i.e. greater than expected just due to random variation
- Microarray vs RNA-seq
 - Microarray
 - Fluorescence proportional to expression \rightarrow continuous data
 - RNA-seq

Number of reads assigned to a feature (gene, transcript) proportional to expression \rightarrow count data

Here we focus on count-based measures of gene expression

Search for significantly differentially expressed genes

- Use only a fold-change ranking ?
 - Do not take variability into account
 - Do not take level of expression into account
 - No control of the false positive rate
- Hypothesis testing
 - For each gene
 - H0 : No gene expression difference between the compared conditions
 - H1 : There is a gene expression difference between the compared conditions

Steps

- Choose a statistic
- Define a decision rule
 - Define a threshold below which we will reject H0

Statistic to search for significantly differentially expressed genes

- Sequencing a library = randomly and independently choose N sequences from the library
 - \rightarrow read counts ~ multinomial distribution
- High number of reads, probability of a read assigned to a given gene small → Poisson approximation
 - Distribution of counts across technical replicates for the majority of genes fit well to a Poisson distribution
 Marioni et al. Genome Research 2008;18(9):1509-17
 Bullard et al. BMC Bioinformatics 2010;11,94
- → Technical replicates ~ Poisson distribution

Statistic to search for significantly differentially expressed genes

But Poisson distribution : variance = mean

➔ Across biological replicates variance > mean for many genes (Anders et al. Genome Biology 2010;11:R106) : overdispersion

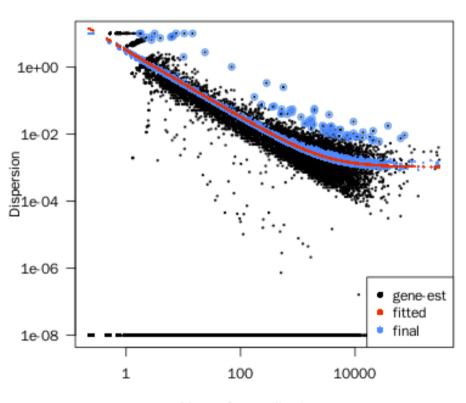
➔ Negative binomial distribution : a good alternative to Poisson in the case of overdispersion

 \rightarrow Biological replicates ~ Negative binomial distribution

- How to estimate the overdispersion parameter ?
 - Very few replicates → challenging issue
 - DESeq2 (Love et al. Genome Biol. 2014;15:550)
 Shares information across genes to improve the estimation of dispersion Assumes that genes of similar average expression strength have similar dispersion

Dispersion plot

- Black : gene dispersion values (calculated using only the observed counts)
- Red : curve fitted to black dots to capture the overall trend of dispersion-mean dependence
- The red curve is used as a prior mean for a second estimation round, which results in final blue values (used during the test)
- Blue circles : dispersions outliers → for these genes the statistical test is based on the empirical variance to be more conservative



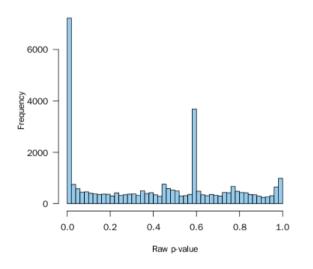
Mean of normalized counts

Dispersions

Definition of a decision rule

- p-value
 - Probability of obtaining a statistic at least as extreme as the one that was actually observed, assuming that H0 is true

Distribution of raw p-values - siMitf vs siLuc



- Reject H0 if p-value < threshold</p>
 - Common threshold = 0.05
 - the observed result would be highly unlikely under H0

But be careful : you perform multiple testing !

Multiple testing problem

- To identify significantly differentially expressed genes
 - \rightarrow As many tests as the number of genes (G)
- With a type I error α for each gene
 - we expect to find $G\alpha$ false positives
 - i.e. $G\alpha$ genes declared to be differentially expressed even if there are not
 - e.g. G=30,000 genes α =0.05 \rightarrow We expect to find 1,500 false positives
 - \rightarrow Important to control the false positive rate when we make a lot of tests

2 points of views

- Individually consider the differentially expressed genes sorted according to a statistic
- Consider a list of differentially expressed genes, in which we would like to control the false positive rate
 - → Use a multiple testing correction

Multiple testing correction methods

- Family-Wise Error Rate (FWER)
 - Probability to have at least one false positive
 - e.g. FWER = $0.05 \rightarrow 5\%$ chances of having at least one false positive
- Bonferroni method
 - Bonferroni
 - $p_{g_{adjusted}} = min (Gp_g, 1)$
 - \rightarrow Each test is performed with a type I error α/G
 - Very conservative method (Ge et al. TEST 2003;12(1):1-77)

Multiple testing correction methods

False Discovery Rate (FDR)

- Expected proportion of false positives among genes declared as differentially expressed
- e.g. FDR = 0.05 → We expect to find 5% of false positives among genes declared as significantly differentially expressed
- Benjamini and Hochberg method
 (Journal of the R. Stat. Soc., Series B 57 (1): 125–133)
 - Calculation of adjusted p-values that allows to control the FDR

3. How many genes are significantly differentially expressed between siMitf and siLuc (FDR<0.05) ?

Independant filtering

Goal : filter out those tests from the procedure that have no, or little chance of being significant, without even looking at their test statistic

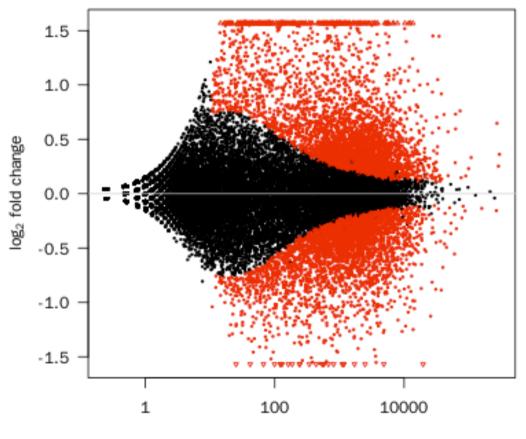
→ Results in increased detection power at the same type I error

- Genes with very low counts are not likely to be significantly differentially expressed typically due to high dispersion
 - DESeq2 defines a threshold on the mean of the normalized counts irrespective of the biological condition
 - → Independent because the information about the variables in the design formula is not used (Love et al. Genome Biol. 2014;15:550)

Genes discarded by the independent filtering \rightarrow adjusted p-value = NA in the results table

Visualization of significantly differentially expressed genes : MA-plot

MA-plot - siMitf vs siLuc



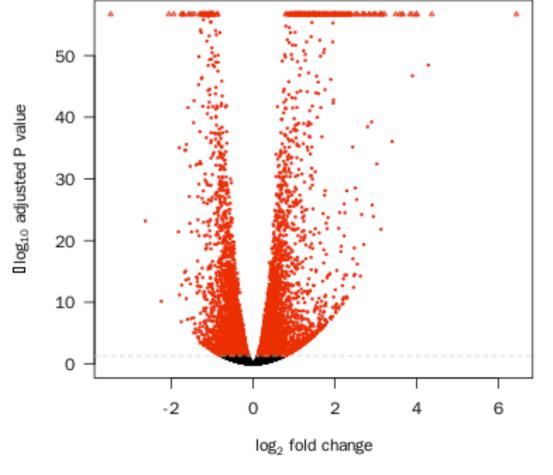
Mean of normalized counts

Red dots : FDR < 0.05

Triangles : features having a too low/high log₂FC to be displayed on the plot

Visualization of significantly differentially expressed genes : volcano plot

Volcano plot - siMitf vs siLuc



Red dots : FDR < 0.05

SARTools_DESeq2
06 RNAseq1709 20 shown, 19 deleted 288.66 MB
k to view) Size txt 5.7 MB 524.8 KB Tabulated 582.4 KB text files 582.4 KB 582.4 KB
34: SARTools DESeq2 tables 693 bytes

format: html, database: hg38

- The format of the 3 tables is the same
- Download the file siMitfvssiLuc.up.txt
- Open this file with Excel

ld	siLuc2	siLuc3	siMitf3	siMitf4	norm.siLuc2	norm.siLuc3	norm.siMitf3	norm.siMitf4	baseMean	siLuc	siMitf	FoldChange	log2FoldChange	pvalue	padj	dispGeneE	st dispFit	dispMAP	dispersion	betaConv	maxCooks	outlie
ENSG0000018408	4640	5232	18689	21980	4882	5124	19721	20001	12431.79	5003	19861	3.936	1.977	0	0 0	4,00E-0	4 0.0013	0.0011	0.0011	TRUE	NA	NA
ENSG0000081189	1686	1770	8339	9590	1774	1733	8799	8727	5258.28	1754	8763	4.932	2.302	0	0 0		0 0.0016	0.0014	0.0014	TRUE	NA	NA
ENSG00000124942	310	416	5136	6203	326	407	5420	5644	2949.39	366	5532	14.313	3.839	0	0 0	0.0098	0.0021	0.0024	0.0024	TRUE	NA	NA
ENSG00000143341	3663	3901	15667	18627	3854	3820	16532	16950	10288.97	3837	16741	4.324	2.112	0	0 0		0 0.0014	0.0011	0.0011	TRUE	NA	NA
ENSG00000154556	333	368	4428	5061	350	360	4672	4605	2497.13	355	4638	12.499	3.644	0	0 0		0 0.0023	0.002	0.002	TRUE	NA	NA
ENSG00000185565	651	634	5333	6483	685	621	5627	5899	3208.12	653	5763	8.577	3.101	0	0 0	0.0013	0.002	0.002	0.002	TRUE	NA	NA
ENSG00000142871	241	273	3047	3744	254	267	3215	3407	1785.75	260	3311	12.011	3.586	3.297672	2 8.371847652		0 0.0028	0.0026	0.0026	TRUE	NA	NA
ENSG00000106772	3021	3272	11927	13842	3178	3204	12585	12596	7890.95	3191	12590	3.91	1.967	7.7764924	4 1.72745058		0 0.0014	0.0012	0.0012	TRUE	NA	NA
ENSG00000163328	127	140	2224	2673	134	137	2347	2432	1262.46	136	2390	16.057	4.005	1.908754	8 3.392048169		0 0.0036	0.0031	0.0031	TRUE	NA	NA
ENSG0000064042	1136	1153	5785	6412	1195	1129	6104	5835	3565.84	1162	5970	5.046	2.335	2.284612	3.69089454	8,00E-0	4 0.0019	0.0018	0.0018	TRUE	NA	NA
ENSG00000114423	2267	2447	8445	9892	2385	2396	8911	9001	5673.5	2390	8956	3.709	1.891	3.811925	3 5.645143796	í í	0 0.0016	0.0013	0.0013	TRUE	NA	NA

→ 1 line per gene (Id = Ensembl gene id)
→ 23 columns

siLuc2 siLuc3 siMitf3 siMitf4

Raw read counts in each sample

norm.siLuc2 norm.siLuc3 norm.siMitf3 norm.siMitf4

Rounded normalized counts in each sample

baseMean

Mean of normalized counts over all samples

siLuc siMitf

Rounded mean of normalized counts over siLuc/siMitf samples

FoldChange

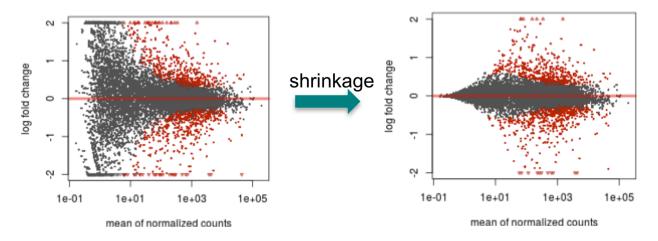
Expression fold change = 2^{log2FoldChange}

log2FoldChange

- Iog2FoldChange estimated by the generalized linear model
 - Reflects the differential expression between siMitf and siLuc
 - $\sim 0 \rightarrow$ similar gene expression in both conditions
 - >0 \rightarrow over-expressed gene (siMitf > siLuc)
 - <0 \rightarrow under-expressed gene (siMitf < siLuc)

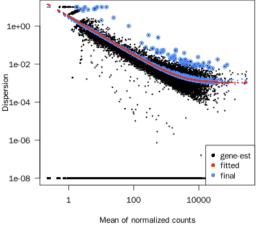
log2 fold-change (LFC) shrinkage

- To improve stability and interpretability of LFC estimates
- High variance of LFC for genes with low read counts
 - Count data \rightarrow ratios are inherently noisier when counts are low
- Shrinkage of LFC estimates toward zero
 - Shrinkage is stronger when the information for a gene is low (e.g. counts are low or dispersion is high)
 - Avoids that these values, which otherwise would frequently be unrealistically large, dominate the top-ranked LFC
- Shrunken LFC offer a more reproducible quantification of transcriptional differences than standard LFC (Love et al. Genome Biol. 2014;15:550)



pvalue padj

p-value and p-value adjusted for multiple testing



dispGeneEst

- Dispersion parameter estimated from gene counts
 - i.e. black dots on dispersion plot

dispFit

- Dispersion parameter estimated from the model
 - i.e. red dots on dispersion plot

dispMAP

- Maximum a posteriori dispersion parameter
 - i.e. blue dots on dispersion plot

dispersion

- Final dispersion parameter used to perform the test
 - i.e. blue dots and circles on dispersion plot

betaConv

- Convergence of the coefficients of the model (True of False)
 - For siMitf project the model converges for all genes

maxCooks outlier

- Maximum Cook's distance of the gene
- If the gene has been detected as a count outlier
 - DESeq2 automatically flags genes which contain a high Cook's distance for samples which have 3 or more replicates
 - Therefore = NA for Mitf project
 - Cook's distance
 - Measures of how much a single sample is influencing the fitted coefficients for a gene
 - Large value of Cook's distance is intended to indicate an outlier count