Analysis of ChIP-seq data (answers to questions)

Stéphanie Le Gras (slegras@igbmc.fr)

Exercise 1: mapping statistics

• 2.

- Click on the button S an select "create new"
- Click on the history name "Unnamed history", erase "Unnamed history", enter "ChIP-seq data analysis" and press enter

• 3.

- Click on Shared Data (top menu) and select "Data Libraries"
- Click on "NGS data analysis training " > "ChIPseq" > "mapping"
- Select mitf.bam and ctrl.bam datasets (tick boxes beside dataset names)
- Click on the button
 If to History
- Select history: ChIP-seq data analysis
- Click on Import
- Go back to the main page by clicking on "Analyzed data" (top menu)

Exercise 1: mapping statistics

• 4

- Search for "flagstat" in the search field (tool panel)
- Click on the name of the tool
- Click on 🐴 to select multiple datasets
- Select all 2 datasets
- Click on ✓ Execute

Sample name	No. of raw reads	No. of aligned reads
MITF	31,334,257	23,124,393
Ctrl	29,433,042	19,949,607

Exercise 2: duplicate reads estimate

• 1.

- Search for "markdup" in the search field (tool panel)
- Click on the name of the tool
- Click on 🐴 to select multiple datasets
- Select the 2 bam files
- Select validation stringency: Silent
- Click on ✓ Execute
- Open the datasets "MarkDuplicates on data * : MarkDuplicate metrics"

	No. of raw reads	No. of aligned reads	No. of duplicate reads
MITF	31,334,257	23,124,393	16,901,318
Ctrl	29,433,042	19,949,607	15,151,227

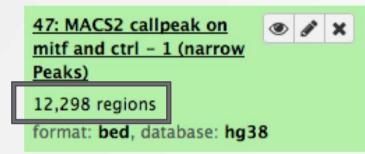
Exercise 3: Visualization of the data

• 1.

- Idh1 -> No peak
- Eef2 -> No peak
- AP1S2 -> Peak,
- PABPC11 -> No peak
- Park7 -> No peak
- Pmel -> Peak
- Cdk2 -> Peak
- Actb -> No peak

Exercise 4: peak calling

• 1.


- Search for "macs2 callpeak" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - ChIP-Seq Treatment File: mitf.bam
 - ChIP-Seq Control File: ctrl.bam
 - Effective genome size: Human
 - Outputs: select Peaks as tabular file, summits, Summary page (html), Plot in PDF

Click on
 Execute

Exercise 5: peak calling

• 2.

• There is 12,298 peaks

• 3. Look at the HTML dataset

#2 finished!
#2 predicted fragment length is 75 bps
#2 alternative fragment length(s) may be 75 bps
#2.2 Generate R script for model : MACS2_model.r

• The d value estimated by MACS seems a bit small. Let's try to re-run MACS with the expected fragment size : 200

Exercise 5: peak calling

• 4.

- Click on the name of one of the datasets generated by Macs2.
- Click on 😂 to display Macs2 form with the same parameters as for the previous run of Macs2
- In Build Model, select Do not build the shifting model (-nomodel)
- Enter 200 in the text box "The arbitrary extension size in bp"

Click on
 Execute

- 5.
 - 7,352 peaks are now found

• NOTE: the graphs (showing the d values estimate) are no longer generated

• 1.

- Search for "homer annot" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - · Homer peaks OR BED format: MITF peaks narrow peaks dataset (2nd run of Macs2)
 - Genome version: hg38
- Click on Execute

- 2.
 - The Homer annotatePeaks tool generates two datasets: a log file and a tabular file containing annotated peaks.
 - Click on the *I* of the dataset which contain annotated peaks.
 - Click on the Datatype tab
 - Select **tabular** in the drop down list "New Type:"
 - Click on Save

• 3.

- Search for "histogra" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - · Dataset: tabular file which contains annotated peaks
 - Numerical column for x axis: column: 10
 - Plot title: Frequency of peaks relative to TSS
 - Label for x axis: Distance to TSS

• Click on 🗸 Execute

- 4.a.
 - Search for "Cut" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Cut columns: c8
 - Delimited by: Tab
 - From: tabular file which contains annotated peaks

Click on
 Execute

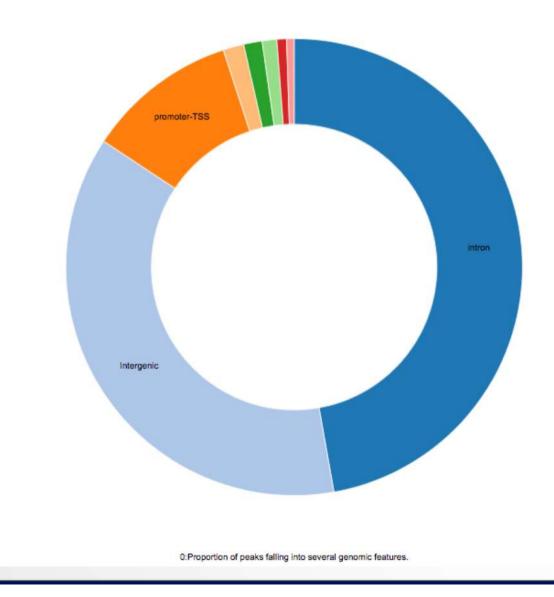
1

• 4.b.

- Search for "Remove" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - Remove first: 1
 - From: resulting dataset after 4.b
- Click on
 Execute

• 4.c.

- Search for "Count" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - from dataset: resulting dataset after 4.c
 - Count occurrences of values in column(s): column: 1
 - Delimited by: Whitespaces
 - How should the results be sorted?: With the most common values first


• 4.d.

- Expand the box of the dataset generated in 4.d, click on 🛄 and select Charts
- Double click on Pie charts
- Click on editor (top right)
- Go to the Select data tab:
 - Provide a label: Proportion of peaks falling into several genomic features.
 - Labels: Column: 2
 - Values: Column: 1

<u>طا</u> New Chart	🛃 Visualize
≡ <u>Start</u> ♦ <u>Customize</u> Select data	
Pie chart (NVD3) Renders a pie chart using NVD3 hosted at <u>http://www.nvd3.org</u> .	
1: Data series	
Provide a label	
Proportion of peaks falling into several genomic features	
Labels	
Column: 2	•
Values	
Column: 1	•
Insert Data series	

Click on Visualize

●intron ● Intergenic ● promoter-TSS ● TTS ● exon ● 3' ● 5' ● non-coding

13

Exercise 7: de novo motif discovery

• 1.a

- Search for "Sort" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - Sort Dataset: dataset with peak summits
 - on column: Column: 5
 - with flavor: Numerical sort
 - everything in: Descending order
- Click on 🗸 Execute
- 1.b
 - Search for "select first" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Select first: 800
 - From: dataset generated in 1.a
 - Click on
 Execute

Exercise 7: de novo motif discovery

• 2.a

- Import the file which contains chromosome lengths
- Click on Shared Data (top menu) and select "Data Libraries"
- Click on "Chromosome length"
- Select the dataset named hg38.len (tick boxes beside dataset names)
- Click on the button "To history"
- Select history: ChIP-seq data analysis
- Click on "Import"
- Go back to the main page by clicking on "Analyzed data" (top menu)
- Run slopBed
 - BED/VCF/GFF file: MACS14_in_Galaxy_summits.bed
 - Genome file: hg38.len
 - Choose what you want to do: Increase the BED/VCF/GFF entry by the same number of base pairs in each direction. (default)
 - Number of base pairs: 50

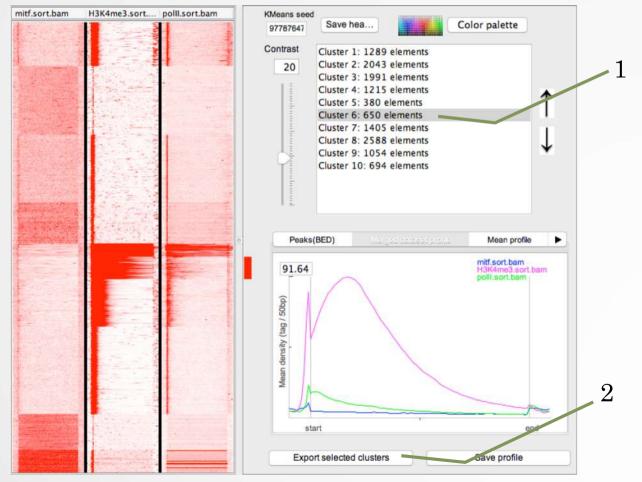
Exercise 7: de novo motif discovery

• 3.

- Search for "extract" in the search field (tool panel)
- Click on the name of the tool
- Set parameters:
 - Fetch sequences for intervals in: the dataset generated in 2.c
 - Interpret features when possible: No
 - Click on
 Execute

• 4.

- Expand the box of the dataset generated in 3 and click on 🖺 to download the file
- 5.
 - Go to MEME-chIP website and run the tool with the fasta file you've just downloaded and with default parameters.


• 1.

- Select clusters 1, 5, 7, 8 and click on Export Selected clusters
- Import the file previously exported as reference coordinates. Click on browse, go to the directory which contains the file and click on open.
- Click on Extract data
- Click on Clustering

mitf.sort.bam	H3K4me3.sort	pollI.sort.bam	KMeans seed		-		
	1 Marian		97787647	Save hea		Color palette	
			Contrast				1
	1			Cluster 1: 1289 Cluster 2: 2043			
A PARTY AND	A State of the		20	Cluster 2: 2043 Cluster 3: 1991			
and the second			1.5	Cluster 4: 1215			
	a state of the	D.O. N. S. Low R.		Cluster 5: 380			↑
				Cluster 6: 650	elements		
			<u>.</u>	Cluster 7: 1405			1
- Anna Anna A				Cluster 8: 2588			1
建立的主张	1. 1. 1. 1. 1.		Dž –	Cluster 9: 1054			
	and the second		T	Cluster 10: 694	elements		
	1 1 3 3 A 1						
Land the second	1993年1月						
The second second							
A SA ASE AND	A Standard						
Participation of	and seatting		Peaks	BED) Mer	ged dataset profile	Mean profile	•
Prest and							
1-05-01							
	1. 1. 21						
	1.4.4						
And the second	1 2 2						
	and the second second						
and the second second second	-						
	- Cartana -						
C. CORPORT	Containe Section	Participant P	Expo	t selected cluster	s	Save profile	
				eren eta artea pod 7 270		-	

• 2.

- Click on cluster 6 (1)
- Click on Export selected clusters (2)

- Go to DAVID website https://david.ncifcrf.gov/
- Click on Function Annotation (left menu)
- Fill in the form:
 - Copy and paste Ensembl Gene IDs from the Cluster6.xls file in the Paste a list text field
 - Select Identifier (drop down list): ENSEMBL_GENE_ID
 - List Type: Gene List
 - Submit List
- Select: Continue to Submit IDs That DAVID Could Map
- Select to limit annotations by one or more species (left panel)
 - Select Homo sapiens (410)
 - Click on Select Species
- Click on Functional Annotation Clustering
- Keep all default
- Click on Functional Annotation Clustering

https://david.ncifcrf.gov/term2term.jsp?annot=59,12,87,88,30,38,46,3,5,55,53,70,79¤tList=0

ORTABASE

DAVID Bioinformatics Resources 6.8 Laboratory of Human Retrovirology and Immunoinformatics (LHRI)

*** Welcome to DAVID 6.8 *** *** If you are looking for <u>DAVID 6.7</u>, please visit our <u>development site</u>. ***

Functional Annotation Clustering

Help and Manual

Current Gene List: List_1 Current Background: Homo sapiens 410 DAVID IDs Doptions Classification Stringency Medium C Rerun using options Create Sublist

43 Cluster(s)

Download File

	Annotation Cluster 1	Enrichment Score: 12.63	G		Count	P_Value	Benjamin
)	UP_KEYWORDS	Ribosomal protein	RT		29	1.1E-19	2.6E-17
	KEGG_PATHWAY	Ribosome	RT	=	25	6.2E-18	8.6E-16
	UP_KEYWORDS	Ribonucleoprotein	RT	=	33	7.0E-18	8.4E-16
5	GOTERM_BP_DIRECT	SRP-dependent cotranslational protein targeting to membrane	RT	=	21	3.9E-17	5.2E-14
5	GOTERM_MF_DIRECT	structural constituent of ribosome	RT	=	29	6.3E-17	3.8E-14
)	GOTERM_BP_DIRECT	translation	RT		30	1.2E-16	7.5E-14
	GOTERM_BP_DIRECT	viral transcription	RT	=	21	1.5E-15	7.0E-13
)	GOTERM_BP_DIRECT	nuclear-transcribed mRNA catabolic process, nonsense-mediated decay	RT	-	21	5.1E-15	1.7E-12
0	GOTERM_BP_DIRECT	translational initiation	RT	=	22	7.2E-15	1.9E-12
)	GOTERM_BP_DIRECT	rRNA processing	RT	=	26	1.2E-14	2.7E-12
i.	GOTERM_CC_DIRECT	ribosome	RT	-	22	2.2E-13	5.7E-11
)	GOTERM_MF_DIRECT	poly(A) RNA binding	RT	-	54	5.4E-12	9.3E-10
	GOTERM_CC_DIRECT	cytosolic small ribosomal subunit	RT	1 - C	11	3.3E-9	4.3E-7
)	GOTERM_CC_DIRECT	cytosolic large ribosomal subunit	RT		11	1.1E-7	4.9E-6
Ĵ	GOTERM_CC_DIRECT	focal adhesion	RT	-	16	1.5E-3	2.8E-2
1	GOTERM_MF_DIRECT	RNA binding	RT		14	1.3E-1	8.3E-1