Correlation of RNA-seq and ChIP-seq data

- We want to know how many up-regulated genes contain a peak for MITF
 - Compare Gene names of the chIPseq data (annotation step) and the RNAseq data (up-regulated genes).
 - Use the file siMitfvssiLuc.up.annot.txt (annotated with BioMart)
 - All chIPseq peaks are used (annotated with Homer)
 - Use Venny (https://bioinfogp.cnb.csic.es/tools/venny/)

- Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data. RNAseq data have to be formatted before using them into seqMINER
 - seqMINER accept a tab separated file formatted like:
 - Gene ID <tab> Expression Values
 - Expression values are normalized read counts divided by gene length in Kb
 - This file can generated using the Galaxy tool RNAseqDataAnnotation and other Galaxy tools like this (but we won't do it as it takes too much time):
 - 1. Create a new History named "Correlation"
 - 2. Use the tool **RNAseqDataAnnotation** in Galaxy. This tool takes the output of SARTools as input file and annotate it with genes and do gene length normalisation.
 - 1. Select file: the file siMitfvssiLuc.complete.txt you generated with SARTools
 - 2. Select the species for your data: Homo Sapiens
 - 3. Ensembl version? Version 95

- 3. The tool take time to run.
- 4. We are going to create a two columns file from this file. The first column contains Ensembl Gene Ids (column Ensembl_gene_id) and the second column is « norm siMitf4 normalized and divided by gene length in kb ».
 - Use the tool cut to extract this two columns from the file Data_normalization_annotation.txt
 - The range of data in column « norm siMitf4 normalized and divided by gene length in kb » is too large. We are going to divide all values by 50. Use the tool **Compute an expression on every row** to achieve this.
 - Use **cut** to create a final file with two columns :
 - Ensembl Gene Ids
 - « norm siMitf4 normalized and divided by gene length in kb » / 50
 - Download the two columns file.

- 5. Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data
 - Use the Advance (RNAseq) tab to upload a 2-columns table: 1st column contains Ensembl Gene IDs and 2nd column contains normalized read counts of MITF divided by gene length in Kb. Use the file RNAseq_data_ready_for_seqMINER of the directory correlation.
 - Use MITF peak summits (second MACS2 run) as reference coordinates. Download the file from GalaxEast or use the file MITF_peak_summits.bed or directory correlation.
 - Be careful, make sure that in Options>Gene profile, Gene profile analysis is not activated before clicking on « **Extract data** ».