Stéphanie Le Gras (slegras@igbmc.fr)

Mapping

• Find out the position of the reads within the genome

Mapping tool used: Bowtie

- Designed to align reads if:
 - many of the reads have at least one good, valid alignment,
 - many of the reads are relatively high-quality
 - the number of alignments reported per read is small (close to 1)
- Langmead B. et al, Genome Biology 2009
- Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11 17

Duplicated genomic regions

Mappability

- Mappability (a): how many times a read of a given length can align at a given position in the genome
 - a=1 (read align once)
 - a=1/n (read align n times)
 - Regions are empty or poorly covered if the mappability is low

Exercise 1: mapping statistics

Data were aligned using Bowtie v1 with parameters allowing to get the best possible **unique** alignment. How many reads are aligned for each of the samples?

- 1. go to Galaxy France (https://usegalaxy.fr/)
- 2. create a new history named "ChIP-seq data analysis"
- 3. import 2 BAM files (22:mitf.bam and 23:ctrl.bam) from the imported history "NGS data analysis training Strasbourg"
- 4. use the tool *Samtools flagstat tabulate descriptive stats for BAM dataset* to compute the number of aligned reads in the samples.
 - The tool gives alignment statistics on a BAM file.

PCR duplicates

- Related to poor library complexity
- The same set of fragments are amplified
 - Indicates that Immuno-precipitation failed
- Tools to check for
 - FastQC report (duplicate diagram)
 - PCR bottleneck metric (ENCODE)

QC : PBC (PCR bottleneck coefficient)

- An approximate measure of library complexity
- PBC = N1/Nd
 - N1= Genomic position with 1 read aligned
 - Nd = Genomic position with \geq 1 read aligned
- Value :
 - 0-0.5: severe bottlenecking (PCR bias, or a biological finding, such as a very rare genomic feature)
 - 0.5-0.8: moderate bottlenecking
 - 0.8-0.9: mild bottlenecking
 - 0.9-1.0: no bottlenecking (Control or IP with a good library complexity)

https://genome.ucsc.edu/ENCODE/qualityMetrics.html

Exercise 2: duplicate reads estimate

We want to assess the number of duplicate reads

- Use the tool MarkDuplicates to assess the complexity of the libraries (i.e the number of unique sequences). Use default parameters except for:
 - Select validation stringency: Silent (The picard tools validation strategy of BAM file is very stringent. So we turn off validation stringency)
 - The tool generates two datasets:
 - A log/metric file that contains statistics on the tool processing (number of input reads, number of duplicate reads)
 - A BAM file in which duplicated reads are flagged
 - Look at the log/metric file (in excel)

- Compute strand cross correlation for each window w across the genome.
- Use various distance d and compute the mean cross-correlation observed

Landt et al, 2012

NSC: normalized strand coefficient $NSC = \frac{cc(fragment \, length)}{min(cc)}$

NSC \geq 1.05 is recommended

Relative strand correlation (RSC) $RSC = \frac{cc(fragment \, length) - min(cc)}{cc(read \, length) - min(cc)}$ $RSC \ge 0.8 \text{ is recommended}$

Bam files are fat

- **BAM files are fat** as they do contain exhaustive information about read alignments.
 - Memory issues (can only visualize fraction of the BAM).
- Need a more lightweight file format containing only genomic coverage information:
 - X Wig (not compressed, not indexed)
 - **V**TDF (compressed, indexed)
 - SigWig (compressed, indexed)

Coverage file and read extension

- BAM files do not contain fragment location but read location
- We need to extend reads to compute fragments coordinates before coverage analysis
- Not required for PE

Library size normalization

• Signal needs to be normalized

- E.g. Normalize coverage to 1x
 - Popular but not optimal

Already normalized to 1x coverage

...

Should be decreased by 2 fold to get 1x coverage

X Decreasing by 2 fold would underestimate peak signal. Problem

Exercise 3: Visualization of the data

1. Upload the two tdf files in IGV

You can find them in the directory chipseq > visualization

Tip1: They have been generated using IGVtools using the bam files

Tip2: Check that Normalize coverage data (.tdf files only) is selected in View > Preferences... > Tracks

Tip3: Select the two datasets, click right on them and select Group Autoscale

2. Check the following genes:

• Idh1, NPAS2, AP1S2, PABPC1I, Park7, Pmel, Cdk2, Actb

Do you see peaks at these locations?

Keep IGV opened with this two datasets

From reads to peaks

- Chip-seq peaks are a mixture of two signals:
 - + strand reads (Watson)
 - - strand reads (Cricks)
- The sequence tag density accumulates on forward and reverse strands centered around the binding site

From reads to peaks

- Get the signal at the right position
 - Read shift
 - Extension
- Estimate the fragment size
- Do paired-end

Peak detection

- Discover interaction sites from aligned reads
- Idea: loci with a lot of reads/fragments = signal site

Peak finders

	Profile	Peak criteriaª	Tag shift	Control data ^b	Rank by	FDR ^c	User input parameters ^d	filtering: strand-based/ duplicate ^e	Refs.
CisGenome v1.1	Strand-specific window scan	1: Number of reads in window 2: Number of ChIP reads minus control reads in window	Average for highest ranking peak pairs	Conditional binomial used to estimate FDR	Number of reads under peak	1: Negative binomial 2: conditional binomial	Target FDR, optional window width, window interval	Yes / Yes	10
ERANGE v3.1	Tag aggregation	1: Height cutoff Hiqh quality peak estimate, per- region estimate, or input	Hiqh quality peak estimate, per-region estimate, or input	Used to calculate fold enrichment and optionally <i>P</i> values	P value	1: None 2: <u># control</u> # ChIP	Optional peak height, ratio to background	Yes / No	4,18
FindPeaks v3.1.9.2	Aggregation of overlapped tags	Height threshold	Input or estimated	NA	Number of reads under peak	1: Monte Carlo simulation 2: NA	Minimum peak height, subpeak valley depth	Yes / Yes	19
F-Seq v1.82	Kernel density estimation (KDE)	s s.d. above KDE for 1: random background, 2: control	Input or estimated	KDE for local background	Peak height	1: None 2: None	Threshold s.d. value, KDE bandwidth	No / No	14
GLITR	Aggregation of overlapped tags	Classification by height and relative enrichment	User input tag extension	Multiply sampled to estimate background class values	Peak height and fold enrichment	2: # control # ChIP	Target FDR, number nearest neighbors for clustering	No / No	17
MACS v1.3.5	Tags shifted then window scan	Local region Poisson P value	Estimate from high quality peak pairs	Used for Poisson fit when available	P value	1: None 2: <u># control</u> # ChIP	P-value threshold, tag length, mfold for shift estimate	No / Yes	13
PeakSeq	Extended tag aggregation	Local region binomial P value	Input tag extension length	Used for significance of sample enrichment with binomial distribution	g value	1: Poisson background assumption 2: From binomial for sample plus control	Target FDR	No / No	5
QuEST v2.3	Kernel density estimation	2: Height threshold, background ratio	Mode of local shifts that maximize strand cross- correlation	KDE for enrichment and empirical FDR estimation	q value	1: NA 2: <u># control</u> <u># ChIP</u> as a function of profile threshold	KDE bandwidth, peak height, subpeak valley depth, ratio to background	Yes / Yes	9
SICER v1.02	Window scan with gaps allowed	P value from random background model, enrichment relative to control	Input	Linearly rescaled for candidate peak rejection and P values	g value	1: None 2: From Poisson <i>P</i> values	Window length, gap size, FDR (with control) or E-value (no control)	No / Yes	15
SiSSRs v1.4	Window scan	N ₊ - N ₋ sign change, N ₊ +	Average nearest paired	Used to compute fold-enrichment distribution	P value	1: Poisson 2: control	1: FDR 1,2: N ₊ + N. threehold	Yes / Yes	11

Artifact

1. Modeling the shift size of ChIP-Seq tags

- slides *2bandwidth* windows across the genome to find regions with tags more than *mfold* enriched relative to a random tag genome distribution
- randomly samples 1,000 of these highly enriched peaks
- separates their Watson and Crick tags, and aligns them by the midpoint between their Watson and Crick tag centers
- define *d* as the distance in bp between the summit of the two distributions

• 2. Peak detection

- Normalization: linearly scales the total control read count to be the same as the total ChIP read count
- Duplicate read removal
- Tags are shifted by d/2

Generate signal profile along each chromosome

- Slides 2d windows across the genome to find candidate peaks with a significant tag enrichment (Poisson distribution *p*-value based on λ_{BG} , default 10⁻⁵)
- Estimate parameter λ_{local} of Poisson distribution

3. Multiple testing correction (FDR)

- Swap treatment and input and call negative peaks
- Take all the peaks (neg + pos) and sort them by increasing p-values

We now want to call MITF peaks.

- 1. Use Macs2 callpeak to perform the peak calling on the data. Use default parameters except for
 - Are you pooling Treatment Files? No
 - ChIP-Seq Treatment File: [mitf bam file marked by MarkDuplicates] (1)
 - Do you have a Control File? Yes
 - Are you pooling Control files? No
 - ChIP-Seq Control File: [control bam file marked by MarkDuplicates] (2)
 - Effective genome size: H.Sapiens (2.7e9)
 - Outputs:
 - Peaks as tabular file (compatible with MultiQC)
 - Peak summits
 - Summary page (html)
 - Plot in PDF (only available if a model is created and if BAMPE is not used)

Macs2 callpeak generates 5 datasets:List of the peaks (tabular format)

# This	file is generated by	MACS version 2.1.1.201	60309						
# Com	nand line: callpeak	-t /shared/ifbstor1/gala:	xy/datasets/002/4	47/dataset_2447115.d	atname MarkD	puplicates_on_data_1M	larkDuplicates_BAM_output -c /	/shared/ifbstor1/galaxy/datase	ets/002/447/datase1_2447117.dat f
# ARGU	MENTS LIST:								
# name	= MarkDuplicates_	on_data_1MarkDupli	icates_BAM_output	ut					
# form:	at = BAM								
# ChiP	-seq file = ['/shared,	ifbstor1/galaxy/dataset	ts/002/447/datase	t_2447115.dat*]					
# contr	ol file = ['/shared/ift	stor1/galaxy/datasets/	002/447/dataset_	2447117.dat']					
# effec	tive genome size =	2.70e+09							
# band	width = 300								
# mode	el fold = [5, 50]								
# qvalu	e cutoff = 5.00e-02								
# Large	er dataset will be sc	aled towards smaller da	ataset.						
# Rang	e for calculating reg	ional lambda is: 1000 b	ops and 10000 bp	2					
# Broad	region calling is of	r							
# Paire	d-End mode is off								
# tag s	ize is determined as	54 bps							
# total	tags in treatment: 2	3015734							
# tags	after filtering in trea	tment: 6208896							
# maxir	num duplicate tags	at the same position in	n treatment = 1						
# Redu	ndant rate in treatm	ent: 0.73							
# total	tags in control; 198	57374							
# tags	after filtering in con	trol: 4786453							
# maxir	num duplicate tags	at the same position in	control = 1						
# Redu	ndant rate in contro	l: 0.76							
# d = 7	6								
# alterr	native fragment leng	th(s) may be 76 bps							
chr	start	end	length	abs_summit	pileup	-log10(pvalue)	fold_enrichment	-log10(qvalue)	name
chr1	980687	980817	131	980745	8.48	10.33256	7.26988	6.42258	MarkDuplicates_on_data_1_
chr1	983820	983925	106	983870	6.94	9.07098	6.75700	5.31956	MarkDuplicates_on_data_1
chr1	1031344	1031476	133	1031406	6.17	6.78796	5.19364	3.22920	MarkDuplicates_on_data_1
chr1	1079423	1079565	143	1079490	12.33	18.23302	10.85866	13.81715	MarkDuplicates_on_data_1_
chr1	1304816	1304948	133	1304874	12.33	18.05096	10.79187	13.65004	MarkDuplicates_on_data_1_
chr1	1441082	1441180	99	1441154	12.33	16.63943	10.22580	12.34435	MarkDuplicates_on_data_1
chr1	1567020	1567190	171	1567127	13.88	18.30332	11.40816	13.87539	MarkDuplicates_on_data_1_
chr1	1567258	1567811	554	1567568	16.96	23,46685	13,77289	18.71095	MarkDuplicates on data 1

• List of the peaks (tabular format)

chr	start	end	length	abs_summit	pileup	-log10(pvalue)	fold_enrichment	-log10(qvalue)	name
chr1	980687	980817	131	980745	8.48	10.33256	7.26988	6.42258	MarkDuplicates_on_data_1_
chr1	983820	983925	106	983870	6.94	9.07098	6.75700	5.31956	MarkDuplicates_on_data_1_
chr1	1031344	1031476	133	1031406	6.17	6.78796	5.19364	3.22920	MarkDuplicates_on_data_1_
chr1	1079423	1079565	143	1079490	12.33	18.23302	10.85866	13.81715	MarkDuplicates_on_data_1_
chr1	1304816	1304948	133	1304874	12.33	18.05096	10.79187	13.65004	MarkDuplicates_on_data_1_
chr1	1441082	1441180	99	1441154	12.33	16.63943	10.22580	12.34435	MarkDuplicates_on_data_1_
chr1	1567020	1567190	171	1567127	13.88	18.30332	11.40816	13.87539	MarkDuplicates_on_data_1_
chr1	1567258	1567811	554	1567568	16.96	23.46685	13.77289	18.71095	MarkDuplicates on data 1

- start: start position of peak
- end: end position of peak
- length: length of peak region
- abs_summit: absolute peak summit position
- pileup: pileup height at peak summit
- -log10(pvalue): -log10(pvalue) for the peak summit (e.g. pvalue =1e-10, then this value should be 10)
- fold_enrichment: fold enrichment for this peak summit against random Poisson distribution with local lambda
- -log10(qvalue): -log10(qvalue) at peak summit
- name: peak name

• List of the peaks (Narrowpeak format)

Chrom	Start	End	Name	Score	Strand	ThickStart	ThickEnd	ItemRGB	BlockCount
chr1	980686	980817	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_1	64	<u>21</u>	7.26988	10.33256	6.42258	58
chr1	983819	983925	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_2	53	÷	6.75700	9.07098	5.31956	50
chr1	1031343	1031476	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_3	32	* 5	5.19364	6.78796	3.22920	62
chr1	1079422	1079565	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_4	138	÷	10.85866	18.23302	13.81715	67
chr1	1304815	1304948	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_5	136	\$P.	10.79187	18.05096	13.65004	58
chr1	1441081	1441180	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_6	123	*:	10.22580	16.63943	12.34435	72
chr1	1567019	1567190	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_7	138		11.40816	18.30332	13.87539	107
chr1	1567257	1567811	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_8	187	1	13.77289	23.46685	18.71095	310
chr1	1573515	1573650	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_9	62	2 0	6.66722	10.19656	6.29607	50
chr1	1586289	1586365	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_10	14		4.10564	4.39929	1.45337	7
chr1	1728644	1728730	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_11	15	10	4.27812	4.90906	1.52693	66
L. Start	of peak	orpeat	A. Peakname 5. Integer score for d	159181	fold-cr	ange 109	10. Relation	ovalue wesummi at start	L POSITION

• List of the peak summits (BED): contains the peak summit location for each peak.

Chrom	Start	End	Name	Score
chr1	980744	980745	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_1	6.42258
chr1	983869	983870	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_2	5.31956
chr1	1031405	1031406	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_3	3.22920
chr1	1079489	1079490	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_4	13.81715
chr1	1304873	1304874	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_5	13.65004
chr1	1441153	1441154	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_6	12.34435
chr1	1567126	1567127	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_7	13.87539
chr1	1567567	1567568	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_8	18.71095
chr1	1573565	1573566	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_9	6.29607
chr1	1586296	1586297	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_10	1.45337
chr1	1728710	1728711	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_11	1.52693
chr1	1807136	1807137	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_12	4.44141

PDF images about the model based on your data

• Log of MACS - output during Macs2 run (HTML)
Exercise 4: peak calling

- 2. Look at MACS2 results. How many peaks are found?
- 3. What is the fragment size estimated by Macs2? What do you think of the value?

Exercise 5: peak calling

- 1. Rerun **Macs2** using the same parameters as before but change the shift size:
 - Build Model: Do not build the shifting model (--nomodel)
 - The arbitrary extension: 200
- 2. How many peaks are now found?

To assess which peak calling is best, we are going to:

- 1. Extract regions that are unique to the first peak sets [Galaxy]
- 2. Look at peaks called in the two peak sets in a genome browser and check whether the peaks are fine [IGV]
- 3. Keep the best peak set

Bedtools is a collection of tools for genome arithmetic

- intersect, merge, count, get closest, shuffle (...) genomic intervals of one or multiple files
- Supported formats: BAM, BED, GFF/GTF, VCF
- <u>https://bedtools.readthedocs.io/en/latest/</u>

https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

1. Extract regions that are unique to the first peak sets

Use bedtools intersect (**bedtools Intersect intervals**) in Galaxy to extract peaks found in the first peak set and not in the second.

Parameters

- File A to intersect with B: [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of MACS)
- Combined or separate output files
 - One output per file 'input B' file
 - File B to intersect with A: [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)
- Calculation based on strandedness? Overlaps on either strand
- What should be written to the output file? Write the original entry in A for each overlap (-wa)
- Report only those alignments that **do not** overlap the BED file: Yes

How many regions are found only in the first run of MACS?

2. Look at peaks called in the two peak sets in a genome browser a check whether the peaks are fine

- 1. Download the narrowpeak files of the two runs of MACS
- 2. Load in IGV :
 - 1. mitf.tdf (folder chipseq/visualization)
 - 2. ctrl.tdf (folder chipseq/visualization)
 - 3. [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of MACS)
 - 4. [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)
- 3. Look at the dataset resulting from Bedtools intersect and check at genomic locations found in the file
 - 1. Look at the peaks in the gene SSU72 (chr1:1556527-1578211)
 - 2. Look at the peak in the gene HIVEP3 (chr1:41882599-41882681)
 - 3. Look at the peak in the region chr1:1586290-1586365

Would you keep peaks found in the 1st run of MACS or the 2nd run of MACS?

For select MACS2 results, rename the datasets:

- [MACS2 callpeak on data * and data * (summits in BED)] -> MITF_peak_summits.bed
- [MACS2 callpeak on data * and data * (narrow Peaks)] -> MITF_peaks.narrowPeak

How to deal with replicates

IDR

- Measures consistency between replicates
- Uses reproducibility in score rankings between peaks in each replicate to determine an optimal cutoff for significance.
- Idea:
 - The most significant peaks are expected to have high consistency between replicates
 - The peaks with low significance are expected to have low consistency

SPT20 Replicates (low reproducibility)

(!) IDR doesn't work on broad source data!

Analysis of ChIP-seq data

Peak annotation

- Goal: assigning a peak to one or many genome features (genes/transcripts) to understand which genes are possibly regulated by the binding of the protein of interest
- The name of the gene is important as well as the genic region where the peak is located
- Example of Homer tools:
 - Determines the distance to the nearest Transcription Start Site (TSS) and assigns the peak to that gene
 - Determines the genomic annotation of the region **occupied by the center** of the peak/region. Possible genomic annotation:

Exercise 7: peak annotation

Most of the peak annotation tools assign peaks to the closest gene. Use the tool **bedtools ClosestBed** to find the closest gene for each detected peak.

- Import to your current history the dataset 25:hg38_ens105_ucsc.bed from the imported history « NGS data analysis training Strasbourg ».
- Then, Here are the parameters to use:
 - BED/bedGraph/GFF/VCF/EncodePeak file: MITF_peaks.narrowPeak (second run of MACS2)
 - Overlap with: will you select a BED/bedGraph/GFF/VCF/EncodePeak file from your history or use a built-in GFF file?
 - Use a BED/bedGraph/GFF/VCF/EncodePeak file from the history
 - Select a BED/bedGraph/GFF/VCF/EncodePeak file: hg38_ens105_ucsc.bed
 - How ties for closest feature should be handled: first Report the first tie that occurred in the B file
 - In addition to the closest feature in B, report its distance to A as an extra column: Yes
 - Add additional columns to report distance to upstream feature. Distance definiton:
 - Report distance with respect to A. When A is on the strand, « upstream » means B has a higher (start,stop). (-a)
 - Choose first from features in B that are upstream of feature in A: Yes
- Rename the file: mitf_peaks.annot.tsv.

Analysis of ChIP-seq data

Differential binding analysis

- Find differential binding events by comparing different conditions
 - qualitative analysis: binding vs no binding
 - quantitative analysis: weak binding vs strong binding

Differential binding analysis

Differential binding analysis

Quantitative approach

- Do the peak calling on all data
- Take union of all peaks
- Do quantitative analysis of differential binding events based on read counts
- Statistical models
 - No replicates: assume simple Poisson model
 - With replicates: perform differential test using DE tools from RNA-seq (EdgeR, DESeq,...) based on read counts

Spike-in

- Current normalization methods fail to detect global changes as they make the assumption that globally nothing change but a small portion of observations
- Insert external chromatin used as reference chromatin

Orlando et al, 2014

Spike-in

• Spike-in normalization can be applied to ChIP-Seq data to reduce the effects of technical variation and sample processing bias

http://www.activemotif.com/catalog/1091/chip-normalization

ChIP-seq data analysis

Motif discovery

- Sequence to which the protein of interest may be bound
- Search for enriched nucleotide sequences (i.e motifs) within peak sequences.

- De novo motif discovery
- Motif searching based on motif databases (JASPAR, Transfac)

De novo motif discovery

- Lot of tools exist (Homer, RSAT, MEME-suite...)
- MEME-suite:
 - MEME (Bailey et al. 1994)
 - Long motifs
 - Complexes of TFs
 - Complexity of the algorithm!
 - DREME (Bailey et al. 2011)
 - Faster than MEME
 - Can have more input sequences (but shorter ~100b)
 - Find regular expression (not PSSM)
 - Short motifs (3 to 8 nucleotides by default)
 - MEME-chIP (Machanick et al. 2011)
 - Pipeline based on the use of several tools from the MEME-suite including DREME, MEME, TOMTOM (Gupta et al, 2007)
 - Only 100b sequences are analyzed. The input sequences should be centered on a 100 character region expected to contain motifs.

MEME-chIP

- MEME and DREME: discover novel DNA-binding motifs
- CentriMo: determine which motifs are most centrally enriched
- Tomtom: analyze them for similarity to known binding motifs
- SpaMo: perform a motif spacing analysis
- MEME-chIP automatically group significant motifs by similarity

Exercise 8: *de novo* motif discovery

We would like to know if there are over-represented nucleotide sequences (i.e motifs) in MITF peaks. Use MEME-chIP (http://memesuite.org/tools/meme-chip) to perform *de novo* motif discovery in nucleotide sequences located +/- 50b around MITF peak summits

- 1. Extract the top 800 peak summits (ranked by -log10pvalue) [Galaxy]
 - 1.a. Sort the peak summits (MITF_peak_summits.bed) by decreasing log10pvalue using the tool Sort
 - 1.b. Extract the top 800 peak summits using the tool Select first on sorted peak summits

Tip: we limit the analysis to the first top 800 peaks to speed up the analysis and to increase the probability to have true positive peaks and thus to have peaks with motifs

Exercise 8: *de novo* motif discovery

- 2. In Galaxy, compute the coordinates of the peak summits +/- 50nt using the dataset which contains the top 800 MITF peak summits (2nd run of Macs2) using the tool SlopBed.
 - Hint: use a genome locally installed (hg38)
 - Hint 2: you want to extend genomic coordinates in each direction
- 3. Extract fasta sequences from the coordinates of the peak summits using the tool bedtools GetFastaBed. Rename the dataset peakSummits_+/-50nt_top800.fasta.
- 4. Download the file peakSummits_+/-50nt_top800.fasta, go to MEME-chIP (<u>http://meme-suite.org/tools/meme-chip</u>) and run MEME-chIP with default parameters on the data

 position weight matrix (PWM), also known as a position-specific weight matrix (PSWM) or position-specific scoring matrix (PSSM)

$$M = \begin{bmatrix} A \\ C \\ G \\ T \end{bmatrix} \begin{bmatrix} 0.3 & 0.6 & 0.1 & 0.0 & 0.0 & 0.6 & 0.7 & 0.2 & 0.1 \\ 0.2 & 0.2 & 0.1 & 0.0 & 0.0 & 0.2 & 0.1 & 0.1 & 0.2 \\ 0.1 & 0.1 & 0.7 & 1.0 & 0.0 & 0.1 & 0.1 & 0.5 & 0.1 \\ 0.4 & 0.1 & 0.1 & 0.0 & 1.0 & 0.1 & 0.1 & 0.2 & 0.6 \end{bmatrix}$$

http://weblogo.berkeley.edu/logo.cgi

Known motif searching

- Charles E. Grant, Timothy L. Bailey, and William Stafford Noble, "FIMO: Scanning for occurrences of a given motif", *Bioinformatics* 27(7):1017–1018, 2011
- Scan nucleotide sequences of interest for PWMs.
- JASPAR, Transfac databases
- Some PWMs are provided by MEME.

Analysis of ChIP-seq data

Meta-profiles

- Global visualization of the data
- Need:
 - Regions of interest
 - Regions around a reference point e.g TSS +/- 1Kb,...
 - Scaled regions e.g peaks, gene bodies,...
 - Signal data (mapped reads)

Heatmap

Mean profile

Computing meta-profiles

.

.

70

Heatmap (clustering)

- Group together genomic regions with similar enrichments
- In a single sample or multiple samples

• E.g:

Heatmap (clustering)

SeqMINER [Ye et al, 2011]

SeqMINER [Ye et al, 2011]

The darker the red the higher the read enrichment

Example

	Density Array Method		ethod Advance(RNA-Seq)
Step 1: Load data Load reference coordinates (i.e. peaks)	Step 2	: Data extraction	Step 3: clustering Distribution list:
Browse			
Load aligned reads	Salacted datasets:		
		1	
Browse		Delete	Clustering Normalization: KMeans raw \$ Expected Number 10 of Clusters:

Exercise 9: Clustering

We have 2 additional datasets to those of MITF and the control : H3K4me3 and pollI. Use seqMINER to have a look at the correlation between MITF, H3K4me3 and pollI.

The tool is in the directory chipseq/seqMINER_1.3.3g. Go to this directory and run the tool by double-clicking on run_in_windows.bat for Windows users or run_in_mac.command for Mac users.

Density Array	Method	Enrichment Based Method	Advance(RNA-Seq)
Step 1: Load data .oad reference .coordinates (i.e. peaks) Browse	Step 2:	Data extraction	Step 3: clustering Distribution list:
oad aligned reads	Selected	datasets:	
		↑ ↓	Clustering Normalization: KMeans raw
Browse		Delete	Clustering Normalization: KMeans raw 😯 Expected Number 10 of Clusters:

Exercise 9: Clustering

- We are going to have a look at MITF, H3K4me3, pollI data at the TSS positions.
- To load the TSS positions of the human genome (hg38 assembly)
 - go to the tab Advance (RNA-Seq) (1)
 - Click on Advanced (2)

2.

Density Arr	y Method Enrichment Based Method Advance	(RNA-Sec)
Step 1: Load data	Step 2: Data extraction	
Load reference coordinates (i.e. peaks)		
Select assembly	RNA-Seq expression	
NONE/Unkn 📀		
Advanced	B	
Load aligned reads	Selected datasets:	
	↑	
	Ţ	
	×	
Browse	Delete	
Load file/a) >>	Extract data	
Load me(s)		

Click on Browse (3), and select the file extracted from Ensembl/Biomart hg38_ens105.bed

1

- Now in Choose a reference from database (1), select the last entry of the drop down list (note that name may be truncated).
- Then, click on Take this TSS as peak as well (2) and OK.

Cho	ose a reference from database	Choose a reference from database
(NONE/Unknown 📀	hg38_e \$
	rn5_ensembl73 mm9_ensembl67ls well	7 Take this TSS as peak as well
Loa	hg38_ensembl84	
LUL	hg38_ensembl85	Load a reference me
	mm10_ensembl90	
4	hg19_ensembl64	Browse
	hg38_e	

• seqMINER has now extracted the coordinates of TSS from the BED file from genes coordinates (1).

Density Arr	av Method Enrichment Based Method Advance/RNA-Sect	
Step 1: Load data	Step 2: Data extraction	
Load reference coordinates (i.e. peaks)	hg38_ens105.bed 61487 peaks. Peak length mean: 0	
Select assembly	RNA-Seq expression	
hg38_e 😒		
Advanced	В	
Load aligned reads	Selected datasets:	
Browse		
Diowas	Delete	
Load file(s) >>	Extract data	

- Click on Density Array Method (1).
- Load the datasets (2)
 - Click on Browse... (2.a) and select the files in the browser. Select the bam files of MITF, polll, H3K4me3 (in the directory chipseq/mapping).
 - Select one file in the list (2.b) and click on Load files >> (2.c). Do it for all files, one at a time.

- Note you can change the track order using the arrows (1.). Set this specific order:
 - MITF,
 - H3K4me3,
 - Polli
 - (See 2.)

	Densloy Arri	Enrichment Based Method	Advance(RNA-Seq)	
	Step 1: Load data	Step 2: Data extraction	Step 3: clustering Distribution list:	
	Load reference coordinates (i.e. peaks)	hg38_ens105.bed 61487 peaks.		
	Browse	Peak length mean: 0		
	Load aligned reads	Selected datasets:		
_	H3K4me3.sort.bam	mitf.sort.bam H3K4me3.sort.bam		
		1.	Clustering Normalization:	
		1.	KMeans raw 📀	
	Browse	Delete	Expected Number 10 of Clusters:	
	Load file(s) >>	Extract data	Clustering	

- We are going to restrict the analysis to the +/2Kb region around TSS. Let's edit the parameters accordingly:
- 1. Click on Tools > Options

2. Enter 2000 instead of 5000 for left extension. Note that the same value is used for right and left extension

	Canaral Gen	e Profile Advanced
Peak extensions:		
💟 same for rig	pht and left extension	n
left extension	: 2000 right	extension: 2000
Reads options:		
-		
🥶 enable au	to-turning of rev	erse strand references
🗹 enable rea	ds extension Siz	e: 200
Cans between	datacete: 5	maximum dunlicated read
Class Detween	uatasets. J	maximum dupicated read
Clustering option	ns:	
Wiggle step:	50 Percentile	threshold: 75.0 %
Max runs:	40 T threshol	d: <u>10</u>
🗌 Run KMea	ns with a given	. 4659226
ОК		Cancel

- In Clustering Normalization: select KMeans linear (1.)
- Click on Clustering (2.)

• • •			Clusters Heat	map		
mitf.sort.bam	H3K4me3.sort	polli.sort.bam	KMeans seed 11419390 Contrast 20	Save heat Cluster 1: 5357 Cluster 2: 5159 Cluster 3: 5098 Cluster 4: 3388 Cluster 5: 2592 Cluster 6: 6583 Cluster 7: 5583 Cluster 7: 5583 Cluster 8: 21102 Cluster 9: 5176 Cluster 10: 1449	elements elements elements elements elements elements elements elements elements elements elements	Color palette ↑ ↓
-			Packes (t selected clusters	ed dataset profile	Mean profile

NOTE: we will all have different results, as the clustering method is Kmean. To have all the same results, we can use a Kmeans seed before running the clustering. To set the seed, go to Tools > options, select Run Kmeans with a given value and enter a value. Then, click on Clustering in the main window and you'll get the same results. For instance, the clustering below can be obtained with a Kmeans seed value of 11419390.

					Clusters Heatmap
Options Canaral Gene Profile Advanced Peak extensions: Same for right and left extension left extension: 2000 right extension: 2000	m	itf.sort.bam	H3K4me3.sort	polll.sort.bam	KMeans seed 11419390 Save heat Color palette Contrast Cluster 1: 5357 elements Cluster 2: 5159 elements Cluster 2: 5159 elements Cluster 3: 5098 elements Cluster 4: 3388 elements Cluster 4: 3388 elements Cluster 5: 5592 elements T Cluster 5: 5583 elements Cluster 7: 5583 elements T
Reads options: enable auto-turning of reverse strand references enable reads extension Size: 200 Gaps between datasets: 5 maximum duplicated reads: 0	Clustering				Cluster 8: 21102 elements Cluster 9: 5176 elements Cluster 10: 1449 elements
Clustering options: Wiggle step: 50 Percentile threshold: 75.0 % Max runs: 40 T threshold: 10					
Run KMeans with a given 11419390 OK Cancel		1			Export selected clusters Save profile
					86

- Peaks (BED) : display the reference coordinates of the selected cluster(s)
- Merge dataset profile: display dataset mean profiles in one graph
- Mean profile: display mean profiles side by side
- Heatmap: Display mean profiles as heatmaps side by side. Useful to assess how dispersed the density values are
- Density values: Density values used to plot the heatmaps and the mean profiles
- Annotation: annotation of references coordinates (if annotation is filled in the advance(RNAseq) tab)
- **Distance**: Histogram of the distances TSS <-> reference coordinates

chr14	103332307	105552507	EN200000523	115	AL138970.2	
chr21	43748468	43748468	ENSG00000281	420	AP001052.1	-
chr21	41877613	41877613	ENSG00000227	698	AP001619.1	-
chr21	29077471	29077471	ENSG00000156	265	MAP3K7CL	+
chr21	31735732	31735732	ENSG0000273	091	AP000255.1	+
chr21	37208503	37208503	ENSG0000230	366	DSCR9	+
chr21	41739373	41739373	ENSG0000236	883	AP001615.1	+
chr21	46462471	46462471	ENSG00000223	692	DIP2A-IT1	+
chr21	37365932	37365932	ENSG0000273	210	AP001437.1	-
chr21	37193926	37193926	ENSG00000228	677	TTC3-AS1	-
chr21	10122273	10122273	ENSG0000279	851	CR382287.2	+
chr21	15067070	15067070	ENSG0000236	471	AF127577.5	+
chr21	31664306	31664306	ENSG0000238	390	RF01241	+
chr21	41882205	41882205	ENSG00000251	778	RF00334	+
c						
Export	selected clusters			Save profile		

2

We are going to do a sub-clustering on reference coordinates (TSS) that have signal.

Select all clusters that have signal at TSS (1) and export the clusters (2) (reference coordinates) into a file called sub-clustering-tss.bed.

- Load the file sub-clustering-tss.bed as reference coordinates (1). Or use the one I generated (see chipseq/seqminer/sub-clustering-tss.bed)
- Remove previous distribution (to save memory) (2)
 - Select the distribution (2.a)
 - Click right on the name of a distribution
 - Select Delete (2.b)
- Extract data (3)
- Run the clustering analysis (4)

• • •			Clusters Heatmap	
mitf.sort.bam	H3K4me3.sort	pollI.sort.bam	Clusters Heatmap KMeans seed 114119390 Save heat Color palette Contrast Cluster 1: 861 elements Cluster 2: 1388 elements 20 Cluster 2: 1388 elements Cluster 3: 1264 elements Cluster 3: 1264 elements Cluster 5: 2160 elements Cluster 6: 261 elements Cluster 7: 1673 elements Cluster 9: 2935 elements Cluster 10: 442 elements Cluster 10: 442 elements Cluster 10: 442 elements	↑ ↓
			Export selected clusters Save profile	

- Before running any other analysis remove all the distributions from the distribution list (done to save memory)
- Run SeqMINER on all Ensembl (v105) genes from TSS to TTS.
 - Reference coordinates : the file is the one you generated using Ensembl/BioMART (hg38_ens105.bed). Click on Browse to load it. (1)

Density Arr Step 1: Load data Load reference coordinates (i.e. peaks) Browse Load aligned reads	Step 2: Data extraction hg38_ens105.bed 61487 peaks. Peak length mean: 32636 Selected datasets:	i Advance(RNA-Seq) Step 3: clustering Distribution list:
polli.sort.bam	H3K4me3.sort.bam polli.sort.bam	Clustering Normalization: KMeans linear
Browse] Delete	Expected Number 1 of Clusters:
1.	Extract data	Clustering

Now we are going to tell seqMINER to work with scaled regions so that they are all considered to be of the same size.

- Go to Tools > Options
- Click on the Gene profile tab (1), select Gene profile analysis. Set parameters (3):
 - Inside bin number: 100
 - Outside bin number (left): 10
 - (right): 10

- In the tab Options > General, make sure that "Run Kmeans with a given value" is set to 11419390
- Click on OK.
- Click on Extract data (1)
- Click on Clustering (2)

		Clusters Heatmap
mitf.sort.bam	H3K4me3.sort polll.sort.bam	KMeans seed Save heat Color palette Contrast Cluster 1: 680 elements Cluster 2: 6156 elements 20 Cluster 2: 6156 elements Cluster 3: 1 elements Cluster 3: 1 elements Cluster 4: 2075 elements Cluster 5: 711 elements Cluster 6: 6716 elements Cluster 7: 7970 elements Image: Cluster 8: 23042 elements Cluster 9: 3051 elements Cluster 10: 11085 elements Image: Cluster 10: 11085 elements
		Pedde(350) Merged dataset profile Mean profile
		Export selected clusters Save profile

- 1. Export a file with all clusters having MITF, pollI and H3K4me3 enrichments (clusters 1, 2, 3, 4, 5, 9). Save the file as sub-clusteringgene.bed.
 - Do a sub-clustering with the file sub-clustering-gene.bed as reference coordinates (keep same Kmeans seed)
- 2. Additional question:
 - 2.a. Export annotations of cluster 4 generated after last clustering (in question 1.). Save the file as cluster4.xls.
 - 2.b. Open the file with Excel, open a web browser to DAVID (<u>https://david.ncifcrf.gov/</u>), run a functional annotation analysis (functional annotation clustering) with the Ensembl Gene IDs from the file in excel.

Assay for Transposase-Accessible Chromatin with highthroughput sequencing

Chromatin accessibility assays

- Chromatin accessibility is the degree to which nuclear macromolecules are able to physically contact chromatinized DNA and is determined by the occupancy and topological organization of nucleosomes as well as other chromatin-binding factors that occlude access to DNA (Klemm et al, 2019)
- Open chromatin regions contains generally transcriptionally active genes
- The accessible genome comprises ~2–3% of total DNA sequence yet captures more than 90% of regions bound by TFs (Thurman et al, 2012)
- Chromatin accessibility is measured by quantifying the susceptibility of chromatin to either enzymatic methylation or cleavage of its constituent DNA
- · Chromatin accessibility assays (non exhaustive list)
 - FAIRE-seq
 - DNAse-seq
 - MNAse-seq
 - ATAC-seq

Figure 1 Schematic diagram of current chromatin accessibility assays performed with typical experimental conditions. Representative DNA fragments generated by each assay are shown, with end locations within chromatin defined by colored arrows. Bar diagrams represent data signal obtained from each assay across the entire region. The footprint created by a transcription factor (TF) is shown for ATAC-seq and DNase-seq experiments.

(Tsompana and Buck, 2014)

Chromatin accessibility assays

 ATAC-seq has become the most widely used method to detect and analyze open chromatin regions

Yan et al, 2020

- Buenrostro et al, 2013
- ATAC-seq is a method for determining chromatin accessibility across the genome
- Transcription factor binding sites and positions of nucleosomes can be identified from the analysis of ATAC-Seq
- Advantages of ATAC-seq over other chromatin accessibility assays:
 - The sensitivity and specificity are comparable to DNase-seq but superior to FAIRE-seq
 - Straightforward and rapidly implemented protocole. ATAC-seq libraries can be generated in less than 3 hours
 - Low number of cells required (500 50,000 cells cells)
 - single-cell ATAC-seq (scATAC-seq) (Cusanovich et al, 2015)

(Buenrostro et al., 2015).

ATAC-seq process

- ATAC-seq protocole utilizes a hyperactive Tn5 transposase to insert sequencing adapters into open chromatin regions
- In a process called "tagmentation", Tn5 transposase cleaves and tags doublestranded DNA with sequencing adaptors
- No additional library prep is needed
- Expected results are enrichments of sequenced reads in open chromatin regions as closed chromatin regions, DNA regions bound by TFs or wrapped around nucleosomes should be protected from Tn5 cleavage activity.

 Paired-end sequencing so that by looking at the distance between the two reads of a pair, we know in which the chromatin environment (Nucleosome Free Region (NFR), around a mono, di,-nucleosome, around a TF) of the DNA fragment.

Buenrostro et al, 2023

- Overall analysis resemble ChIP-seq data analysis
- Description of particularities of ATAC-seq data analysis

- Some cleaning steps are required for ATAC-seq. For example:
 - A large percentage of reads are derived from mitochondrial DNA. These reads are removed as mitochondrial genome is generally not of interest.
 - Omni-ATAC (Corces et al, 2017)

Adapted parameters for peak calling (MACS2): --shift 75 --extsize 150 --nomodel -B --SPMR --keep-dup all --call-summits

Footprinting analysis

- Tn5 cuts in open chromatin regions
- DNA is protected from cleavage at position of TF binding creating a "notch" in ATAC-seq signal
- Footprinting analysis identifies TF activities
 - Height of the notch reflects TF activity
 - Compare TF activity between different conditions

Footprinting analysis

- Volcano plots showing differential TF binding activity as predicted by TOBIAS footprinting analysis in ATAC-seq data of NKp, iNK and mNK from Shin et al. (c) iNK vs NKp; (d) mNK vs NKp; (e) mNK vs iNK.
- Each dot represents a TF
- TFs which activity is changing between the two compared developmental stages are colored (see color legend below volcano plots)

