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Mapping

• Find out the position of the reads within the genome
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Ref. Genome

Reads

• One position in the genome
• Many possible positions (Repeat

regions, duplicate regions, 
pseudogenes…) 
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• Designed to align reads if:
• many of the reads have at least one good, valid alignment,  
• many of the reads are relatively high-quality
• the number of alignments reported per read is small (close to 1)

• Langmead B. et al, Genome Biology 2009 
• Langmead B (2010) Aligning short sequencing reads with 

Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11 17
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Mapping tool used: Bowtie



Duplicated genomic regions
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? ? ?

Keep 1 position 
randomly

Keep all possible 
position

Keep none



Mappability

• Mappability (a): how many times a read of a given length can align at a 
given position in the genome
• a=1 (read align once)
• a=1/n (read align n times)
• Regions are empty or poorly covered if the mappability is low
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Exercise 1: mapping statistics

Data were aligned using Bowtie v1 with parameters allowing to get the 
best possible unique alignment. How many reads are aligned for each 
of the samples?
• 1. go to Galaxy France (https://usegalaxy.fr/)
• 2. create a new history named “ChIP-seq data analysis”
• 3. import 2 BAM files (22:mitf.bam and 23:ctrl.bam) from the 

imported history “NGS data analysis training Strasbourg”
• 4. use the tool Samtools flagstat tabulate descriptive stats for BAM 

dataset to compute the number of aligned reads in the samples. 
• The tool gives alignment statistics on a BAM file.
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PCR duplicates

• Related to poor library complexity
• The same set of fragments are amplified
• Indicates that Immuno-precipitation failed

• Tools to check for 
• FastQC report (duplicate diagram)
• PCR bottleneck metric (ENCODE)
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QC : PBC (PCR bottleneck coefficient)

• An approximate measure of library complexity
• PBC = N1/Nd
• N1= Genomic position with 1 read aligned
• Nd = Genomic position with ≧ 1 read aligned

• Value : 
• 0-0.5: severe bottlenecking (PCR bias, or a biological finding, such as a very

rare genomic feature)
• 0.5-0.8: moderate bottlenecking
• 0.8-0.9: mild bottlenecking
• 0.9-1.0: no bottlenecking (Control or IP with a good library complexity)

11
https://genome.ucsc.edu/ENCODE/qualityMetrics.html

✅❌



Exercise 2: duplicate reads estimate

We want to assess the number of duplicate reads
1. Use the tool MarkDuplicates to assess the complexity of the 

libraries (i.e the number of unique sequences). Use default 
parameters except for:
• Select validation stringency: Silent (The picard tools validation strategy of 

BAM file is very stringent. So we turn off validation stringency)

• The tool generates two datasets:
• A log/metric file that contains statistics on the tool processing (number of input reads, 

number of duplicate reads)
• A BAM file in which duplicated reads are flagged 

• Look at the log/metric file (in excel)
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QC: Strand cross-correlation
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QC: Strand cross-correlation

• Compute strand cross correlation for each window w across the 
genome.
• Use various distance d and compute the mean cross-correlation 

observed
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QC: Strand cross-correlation

Landt et al, 2012



NSC: normalized strand coefficient Relative strand correlation (RSC)

NSC ≥ 1.05 is recommended RSC ≥ 0.8 is recommended
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QC: Strand cross-correlation

Landt et al, 2012
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● BAM files are fat as they do contain exhaustive information about 
read alignments.
○ Memory issues (can only visualize fraction of the BAM).

● Need a more lightweight file format containing only genomic 
coverage information: 
○ ❌Wig (not compressed, not indexed) 
○ ✅ TDF (compressed, indexed) 
○ ✅ BigWig (compressed, indexed)

Bam files are fat



Coverage file and read extension 

● BAM files do not contain fragment location but read location 
● We need to extend reads to compute fragments coordinates 

before coverage analysis
● Not required for PE

wi wi+1 wi+2 wi+3 wi+4

156 20 14 5

Window

Coverage



Library size normalization

● Signal needs to be normalized
○ E.g. Normalize coverage to 1x

■ Popular but not optimal

ChIP 1 
(10 reads)

ChIP 2
(20 reads)

ChIP 3
(20 reads)

✅ Already normalized to 1x 
coverage 

✅ Should be decreased by 2 fold to 
get 1x coverage 

❌ Decreasing by 2 fold would 
underestimate peak signal. Problem 
...Peak



Exercise 3: Visualization of the data

1. Upload the two tdf files in IGV
You can find them in the directory chipseq > visualization
Tip1: They have been generated using IGVtools using the bam files
Tip2: Check that Normalize coverage data (.tdf files only) is selected in View > 
Preferences… > Tracks
Tip3: Select the two datasets, click right on them and select Group Autoscale

2. Check the following genes:
• Idh1, NPAS2, AP1S2, PABPC1l, Park7, Pmel, Cdk2, Actb

Do you see peaks at these locations? 

Keep IGV opened with this two datasets
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From reads to peaks

• Chip-seq peaks are a mixture of 
two signals:
• + strand reads (Watson)
• - strand reads (Cricks)

• The sequence tag density 
accumulates on forward and 
reverse strands centered 
around the binding site
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From reads to peaks

• Get the signal at the right 
position
• Read shift 
• Extension

• Estimate the fragment size
• Do paired-end

24



Peak detection

• Discover interaction sites from aligned reads
• Idea: loci with a lot of reads/fragments = signal site

27
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Peak finders

Pepke et al, 2009



MACS [Zhang et al, 2008]

1. Modeling the shift size of ChIP-Seq tags
• slides 2bandwidth windows across the genome to find regions with tags 

more than mfold enriched relative to a random tag genome distribution
• randomly samples 1,000 of these highly enriched peaks
• separates their Watson and Crick tags, and aligns them by the midpoint 

between their Watson and Crick tag centers
• define d as the distance in bp between the summit of the two distributions
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MACS [Zhang et al, 2008]

• 2. Peak detection
• Normalization: linearly scales the total control read count to be the same as 

the total ChIP read count
• Duplicate read removal
• Tags are shifted by d/2

30Pepke et al, 2009



MACS [Zhang et al, 2008]

• Slides 2d windows across the genome to find candidate peaks with a 
significant tag enrichment (Poisson distribution p-value based on λBG, default 
10-5)
• Estimate parameter λlocal of Poisson distribution

• Keep peaks significant under λBG and λlocal and with p-value < threshold

31

Source:
C. Herrmann



MACS [Zhang et al, 2008]

3. Multiple testing correction (FDR)
• Swap treatment and input and call negative peaks
• Take all the peaks (neg + pos) and sort them by increasing p-values
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FDR(p) =   
# Negative peaks with p-value < p

# Selected peaks
FDR = 2/27 = 0.074



Exercise 4: peak calling

We now want to call MITF peaks.
• 1. Use Macs2 callpeak to perform the peak calling on the data. Use 

default parameters except for
• Are you pooling Treatment Files? No

• ChIP-Seq Treatment File: [mitf bam file marked by MarkDuplicates] (1)
• Do you have a Control File? Yes

• Are you pooling Control files? No
• ChIP-Seq Control File: [control bam file marked by MarkDuplicates] (2)

• Effective genome size: H.Sapiens (2.7e9)
• Outputs: 

• Peaks as tabular file (compatible with MultiQC)
• Peak summits 
• Summary page (html)
• Plot in PDF (only available if a model is created and if BAMPE is not used)
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Exercise 4: peak calling

Macs2 callpeak generates 5 datasets:
• List of the peaks (tabular format)
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Exercise 4: peak calling

• List of the peaks (tabular format)

• chr: chromosome name
• start: start position of peak
• end: end position of peak
• length: length of peak region
• abs_summit: absolute peak summit position
• pileup: pileup height at peak summit
• -log10(pvalue): -log10(pvalue) for the peak summit (e.g. pvalue =1e-10, then this value should be 10)
• fold_enrichment: fold enrichment for this peak summit against random Poisson distribution with local lambda
• -log10(qvalue): -log10(qvalue) at peak summit
• name: peak name
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Exercise 4: peak calling

• List of the peaks (Narrowpeak format)
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Exercise 4: peak calling

• List of the peak summits (BED): contains the peak summit location for each 
peak.
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Exercise 4: peak calling

• PDF images about the model based on your data

• Log of MACS - output during Macs2 run (HTML)
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Exercise 4: peak calling

• 2. Look at MACS2 results. How many peaks are found? 
• 3. What is the fragment size estimated by Macs2? What do you think 

of the value?
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Exercise 5: peak calling

• 1. Rerun Macs2 using the same parameters as before but change the 
shift size:
• Build Model: Do not build the shifting model (--nomodel)
• The arbitrary extension: 200

• 2. How many peaks are now found?

40



Exercise 6: compare the two runs of MACS

To assess which peak calling is best, we are going to:
1. Extract regions that are unique to the first peak sets [Galaxy]
2. Look at peaks called in the two peak sets in a genome browser and 

check whether the peaks are fine [IGV]
3. Keep the best peak set

41



Exercise 6: compare the two runs of MACS

Bedtools is a collection of tools for genome arithmetic
• intersect, merge, count, get closest, shuffle (…) genomic intervals of one or 

multiple files
• Supported formats: BAM, BED, GFF/GTF, VCF
• https://bedtools.readthedocs.io/en/latest/

• Bedtools intersect

42
https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html

https://bedtools.readthedocs.io/en/latest/
https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html


Exercise 6: compare the two runs of MACS

1. Extract regions that are unique to the first peak sets
Use bedtools intersect (bedtools Intersect intervals) in Galaxy to extract peaks
found in the first peak set and not in the second.

Parameters
• File A to intersect with B: [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of 

MACS)
• Combined or separate output files

• One output per file ‘input B’ file
• File B to intersect with A: [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)

• Calculation based on strandedness? Overlaps on either strand
• What should be written to the output file? Write the original entry in A for each overlap (-wa)
• Report only those alignments that **do not** overlap the BED file: Yes

How many regions are found only in the first run of MACS?
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Exercise 6: compare the two runs of MACS

2. Look at peaks called in the two peak sets in a genome browser a check 
whether the peaks are fine

1. Download the narrowpeak files of the two runs of MACS
2. Load in IGV :

1. mitf.tdf (folder chipseq/visualization)
2. ctrl.tdf (folder chipseq/visualization)
3. [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of MACS)
4. [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)

3. Look at the dataset resulting from Bedtools intersect and check at genomic
locations found in the file

1. Look at the peaks in the gene SSU72 (chr1:1556527-1578211)
2. Look at the peak in the gene HIVEP3 (chr1:41882599-41882681)
3. Look at the peak in the region chr1:1586290-1586365

Would you keep peaks found in the 1st run of MACS or the 2nd run of MACS?
For select MACS2 results, rename the datasets:

• [MACS2 callpeak on data * and data * (summits in BED)] -> 
MITF_peak_summits.bed

• [MACS2 callpeak on data * and data * (narrow Peaks)] -> MITF_peaks.narrowPeak
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How to deal with replicates

45

Sample 1.a Sample 1.b

Analyze samples separately and 
takes union or intersection of 
resulting peaks

Sample 1.a Sample 1.b

Sample 1

Merge samples prior to the peak 
calling (e.g recommended by MACS)



IDR

• Measures consistency between replicates
• Uses reproducibility in score rankings between peaks in each

replicate to determine an optimal cutoff for significance.
• Idea:
• The most significant peaks are expected to have high consistency between

replicates
• The peaks with low significance are expected to have low consistency

46

https://sites.google.com/site/anshulkundaje/projects/idr
https://github.com/ENCODE-DCC/chip-seq-pipeline2

https://sites.google.com/site/anshulkundaje/projects/idr
https://github.com/ENCODE-DCC/chip-seq-pipeline2


IDR

47(!) IDR doesn’t work on broad source data!
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Peak annotation

• Goal: assigning a peak to one or many genome features (genes/transcripts) to 
understand which genes are possibly regulated by the binding of the protein of
interest
• The name of the gene is important as well as the genic region where the peak is 

located
• Example of Homer tools:

• Determines the distance to the nearest Transcription Start Site (TSS) and assigns the peak to 
that gene

• Determines the genomic annotation of the region occupied by the center of the peak/region. 
Possible genomic annotation:

27

TSS (Transcription 
start site)

TTS (transcription 
termination site)

Intron Coding exon5’ UTR 3’ UTR



Exercise 7: peak annotation

Most of the peak annotation tools assign peaks to the closest gene. Use the 
tool bedtools ClosestBed to find the closest gene for each detected peak. 
• Import to your current history the dataset 25:hg38_ens105_ucsc.bed from the 

imported history « NGS data analysis training Strasbourg ». 
• Then, Here are the parameters to use:

• BED/bedGraph/GFF/VCF/EncodePeak file: MITF_peaks.narrowPeak (second run of 
MACS2)

• Overlap with: will you select a BED/bedGraph/GFF/VCF/EncodePeak file from your
history or use a built-in GFF file?
• Use a BED/bedGraph/GFF/VCF/EncodePeak file from the history
• Select a BED/bedGraph/GFF/VCF/EncodePeak file: hg38_ens105_ucsc.bed

• How ties for closest feature should be handled: first – Report the first tie that 
occurred in the B file

• In addition to the closest feature in B, report its distance to A as an extra column: Yes
• Add additional columns to report distance to upstream feature. Distance defintion: 

• Report distance with respect to A. When A is on the – strand, « upstream » means B has a 
higher (start,stop). (-a)

• Choose first from features in B that are upstream of feature in A: Yes

• Rename the file: mitf_peaks.annot.tsv.
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Differential binding analysis

• Find differential binding events by comparing different conditions
• qualitative analysis: binding vs no binding
• quantitative analysis: weak binding vs strong binding 
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Cond. a

Cond. b

a=0 a>b a<b a=b b=0



Differential binding analysis

Qualitative approach

56

Peaks unique to BPeaks unique to A

A B

Common peaks



Differential binding analysis

Quantitative approach
• Do the peak calling on all data
• Take union of all peaks
• Do quantitative analysis of differential binding events based on read counts

• Statistical models
• No replicates: assume simple Poisson model
• With replicates: perform differential test using DE tools from RNA-seq

(EdgeR, DESeq,...) based on read counts

57



Spike-in

• Current normalization methods fail to detect global changes as they 
make the assumption that globally nothing change but a small 
portion of observations
• Insert external chromatin used as reference chromatin

58
Orlando et al, 2014



Spike-in

• Spike-in normalization can be applied to ChIP-Seq data to reduce the 
effects of technical variation and sample processing bias

59http://www.activemotif.com/catalog/1091/chip-normalization
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Motif discovery

• Sequence to which the protein of interest may be bound
• Search for enriched nucleotide sequences (i.e motifs) within peak

sequences.
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• De novo motif discovery
• Motif searching based on motif databases (JASPAR, Transfac)
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De novo motif discovery

• Lot of tools exist (Homer, RSAT, MEME-suite…)
• MEME-suite: 
• MEME (Bailey et al. 1994)

• Long motifs
• Complexes of TFs
• Complexity of the algorithm!

• DREME (Bailey et al. 2011)
• Faster than MEME
• Can have more input sequences (but shorter ~100b)
• Find regular expression (not PSSM)
• Short motifs (3 to 8 nucleotides by default)

• MEME-chIP (Machanick et al. 2011)
• Pipeline based on the use of several tools from the MEME-suite including DREME, 

MEME, TOMTOM (Gupta et al, 2007)
• Only 100b sequences are analyzed. The input sequences should be centered on a 100 

character region expected to contain motifs.
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MEME-chIP

• MEME and DREME: discover novel DNA-binding motifs
• CentriMo: determine which motifs are most centrally enriched
• Tomtom: analyze them for similarity to known binding motifs 
• SpaMo: perform a motif spacing analysis

• MEME-chIP automatically group significant motifs by similarity
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Exercise 8: de novo motif discovery

We would like to know if there are over-represented nucleotide 
sequences (i.e motifs) in MITF peaks. Use MEME-chIP (http://meme-
suite.org/tools/meme-chip) to perform de novo motif discovery in 
nucleotide sequences located +/- 50b around MITF peak summits
• 1. Extract the top 800 peak summits (ranked by -log10pvalue) [Galaxy]
• 1.a. Sort the peak summits (MITF_peak_summits.bed) by decreasing -

log10pvalue using the tool Sort
• 1.b. Extract the top 800 peak summits using the tool Select first on sorted peak

summits

Tip: we limit the analysis to the first top 800 peaks to speed up the 
analysis and to increase the probability to have true positive peaks and 
thus to have peaks with motifs
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Exercise 8: de novo motif discovery

• 2. In Galaxy, compute the coordinates of the peak summits +/- 50nt 
using the dataset which contains the top 800 MITF peak summits (2nd

run of Macs2) using the tool SlopBed.
• Hint: use a genome locally installed (hg38)
• Hint 2: you want to extend genomic coordinates in each direction

• 3. Extract fasta sequences from the coordinates of the peak summits 
using the tool bedtools GetFastaBed. Rename the dataset
peakSummits_+/-50nt_top800.fasta.
• 4. Download the file peakSummits_+/-50nt_top800.fasta, go to 

MEME-chIP (http://meme-suite.org/tools/meme-chip) and run 
MEME-chIP with default parameters on the data

65

http://meme-suite.org/tools/meme-chip


PWM

• position weight matrix (PWM), also known as a position-specific
weight matrix (PSWM) or position-specific scoring matrix (PSSM)

66http://weblogo.berkeley.edu/logo.cgi



Known motif searching

• Charles E. Grant, Timothy L. Bailey, and William Stafford Noble, 
"FIMO: Scanning for occurrences of a given motif", Bioinformatics
27(7):1017–1018, 2011
• Scan nucleotide sequences of interest for PWMs.
• JASPAR, Transfac databases
• Some PWMs are provided by MEME.
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Meta-profiles

• Global visualization of the data
• Need:
• Regions of interest 

• Regions around a reference point e.g TSS +/- 1Kb,…
• Scaled regions e.g peaks, gene bodies,…

• Signal data (mapped reads)

69

Mean profile

Heatmap



Computing meta-profiles

70

• (Clustering)
• Heatmap

• Mean of each column -> 
Mean profile

Ye et al, 2011

Reference coordinates e.g peaks



Heatmap (clustering)

• Group together genomic regions with similar enrichments
• In a single sample or multiple samples
• E.g:

71

TF

H3K4me3

RNA pol II

Cluster 1 Cluster 2



Heatmap (clustering)
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SeqMINER [Ye et al, 2011]
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SeqMINER [Ye et al, 2011]
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The darker the red the higher the read enrichment
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Example



Exercise 9: Clustering
We have 2 additional datasets to those of MITF and the control : 
H3K4me3 and polII. Use seqMINER to have a look at the correlation 
between MITF, H3K4me3 and polII.
The tool is in the directory chipseq/seqMINER_1.3.3g. Go to this 
directory and run the tool by double-clicking on run_in_windows.bat
for Windows users or run_in_mac.command for Mac users.
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Exercise 9: Clustering
• We are going to have a look at MITF, H3K4me3, polII data at the TSS 

positions.
• To load the TSS positions of the human genome (hg38 assembly)
• go to the tab Advance (RNA-Seq) (1)
• Click on Advanced (2)

77

Click on Browse (3), and 
select the file extracted from
Ensembl/Biomart
hg38_ens105.bed

1.

2.

3.



Exercise 9: Clustering

• Now in Choose a reference from database (1), select the last entry of the 
drop down list (note that name may be truncated).
• Then, click on Take this TSS as peak as well (2) and OK.

78

1.

2.

3.



Exercise 9: Clustering

• seqMINER has now extracted the coordinates of TSS from the BED 
file from genes coordinates (1).

79

1.



Exercise 9: Clustering

• Click on Density Array 
Method (1).
• Load the datasets (2)
• Click on Browse… (2.a) 

and select the files in the 
browser. Select the bam
files of MITF, polII, 
H3K4me3 (in the 
directory 
chipseq/mapping). 

• Select one file in the list
(2.b) and click on Load
files >> (2.c). Do it for all 
files, one at a time.

80

2.a

2.b

2.c
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Exercise 9: Clustering
• Note you can change the track order using the arrows (1.). Set this 

specific order:
• MITF, 
• H3K4me3, 
• PolII
• (See 2.)

81

1.
1.
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Exercise 9: Clustering

• We are going to restrict the 
analysis to the +/2Kb region
around TSS. Let’s edit the 
parameters accordingly: 

1. Click on Tools > Options

82

2. Enter 2000 instead of 5000 for 
left extension. Note that the 
same value is used for right and 
left extension

3.



Exercise 9: Clustering

83

Click on Extract data.



Exercise 9: Clustering
• In Clustering Normalization: select KMeans linear (1.)
• Click on Clustering (2.)

84

1.

2.



Exercise 9: Clustering
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Exercise 9: Clustering
NOTE: we will all have different results, as the clustering method is Kmean. To have all the 
same results, we can use a Kmeans seed before running the clustering. To set the seed, go to 
Tools > options, select Run Kmeans with a given value and enter a value. Then, click on 
Clustering in the main window and you’ll get the same results. For instance, the clustering 
below can be obtained with a Kmeans seed value of 11419390.
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Exercise 9: Clustering

87

Heatmap Cluster 
definition

Kmeans seed
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Clusters, click on one or 
multiple cluster names to 
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panel below.

Change 
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Exercise 9: Clustering

• Peaks (BED) : display the reference coordinates of the selected cluster(s)
• Merge dataset profile: display dataset mean profiles in one graph
• Mean profile: display mean profiles side by side
• Heatmap: Display mean profiles as heatmaps side by side. Useful to assess how dispersed the 

density values are
• Density values: Density values used to plot the heatmaps and the mean profiles
• Annotation: annotation of references coordinates (if annotation is filled in the advance(RNAseq) 

tab)
• Distance: Histogram of the distances TSS <-> reference coordinates
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Exercise 9: Clustering

We are going to do a sub-clustering on reference coordinates (TSS) that 
have signal. 
• Select all clusters that have signal at TSS (1) and export the clusters 

(2) (reference coordinates) into a file called sub-clustering-tss.bed.

89
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Exercise 9: Clustering
• Load the file sub-clustering-tss.bed as reference coordinates (1). Or use the one I generated (see 

chipseq/seqminer/sub-clustering-tss.bed)
• Remove previous distribution (to save memory) (2)

• Select the distribution (2.a)
• Click right on the name of a distribution 
• Select Delete (2.b)

• Extract data (3)
• Run the clustering analysis (4)
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Exercise 9: Clustering
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Exercise 9: Clustering
• Before running any other analysis remove all the distributions from 

the distribution list (done to save memory)
• Run SeqMINER on all Ensembl (v105) genes from TSS to TTS.
• Reference coordinates : the file is the one you generated using 

Ensembl/BioMART (hg38_ens105.bed). Click on Browse to load it. (1)
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Exercise 9: Clustering

Now we are going to tell 
seqMINER to work with scaled 
regions so that they are all 
considered to be of the same size.
• Go to Tools > Options
• Click on the Gene profile tab (1), 

select Gene profile analysis. Set 
parameters (3):
• Inside bin number: 100
• Outside bin number (left): 10
• (right): 10
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Exercise 9: Clustering

• In the tab Options > General, make sure that “Run Kmeans with a given 
value” is set to 11419390
• Click on OK. 
• Click on Extract data (1)
• Click on Clustering (2)
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Exercise 9: Clustering
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Exercise 9: Clustering

• 1. Export a file with all clusters having MITF, polII and H3K4me3 
enrichments (clusters 1, 2, 3, 4 ,5, 9). Save the file as sub-clustering-
gene.bed.
• Do a sub-clustering with the file sub-clustering-gene.bed as reference 

coordinates (keep same Kmeans seed)

• 2. Additional question: 
• 2.a. Export annotations of cluster 4 generated after last clustering (in 

question 1.). Save the file as cluster4.xls.
• 2.b. Open the file with Excel, open a web browser to DAVID 

(https://david.ncifcrf.gov/), run a functional annotation analysis (functional 
annotation clustering) with the Ensembl Gene IDs from the file in excel.
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ATAC-seq
Assay for Transposase-Accessible Chromatin with highthroughput sequencing
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Chromatin accessibility assays

• Chromatin accessibility is the degree to which
nuclear macromolecules are able to physically 
contact chromatinized DNA and is determined by
the occupancy and topological organization of
nucleosomes as well as other chromatin-binding
factors that occlude access to DNA (Klemm et al,
2019)

• Open chromatin regions contains generally
transcriptionally active genes

• The accessible genome comprises ~2–3% of total
DNA sequence yet captures more than 90% of
regions bound by TFs (Thurman et al, 2012)

• Chromatin accessibility is measured by quantifying
the susceptibility of chromatin to either enzymatic
methylation or cleavage of its constituent DNA

• Chromatin accessibility assays (non exhaustive list)
• FAIRE-seq
• DNAse-seq
• MNAse-seq
• ATAC-seq

(Tsompana and Buck, 2014)
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Chromatin accessibility assays

• ATAC-seq has become the 
most widely used method to 
detect and analyze open 
chromatin regions

Yan et al, 2020
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ATAC-seq

• Buenrostro et al, 2013
• ATAC-seq is a method for determining

chromatin accessibility across the
genome

• Transcription factor binding sites and
positions of nucleosomes can be 
identified from the analysis of ATAC-Seq

• Advantages of ATAC-seq over other 
chromatin accessibility assays:
• The sensitivity and specificity are

comparable to DNase-seq but superior to
FAIRE-seq

• Straightforward and rapidly implemented
protocole. ATAC-seq libraries can be
generated in less than 3 hours

• Low number of cells required (500 - 50,000
cells cells)

• single-cell ATAC-seq (scATAC-seq)
protocole(Cusanovich et al, 2015)

(Buenrostro et al., 2015).
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ATAC-seq process

Sample processing ATAC-seq Data analysis
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ATAC-seq

Sample processing ATAC-seq Data analysis
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ATAC-seq

• ATAC-seq protocole utilizes a
hyperactive Tn5 transposase to insert
sequencing adapters into open 
chromatin regions

• In a process called "tagmentation", Tn5
transposase cleaves and tags double-
stranded DNA with sequencing
adaptors

• No additional library prep is needed
• Expected results are enrichments of

sequenced reads in open chromatin
regions as closed chromatin regions,
DNA regions bound by TFs or wrapped
around nucleosomes should be
protected from Tn5 cleavage activity.
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ATAC-seq

104

• Paired-end sequencing so that 
by looking at the distance 
between the two reads of a pair, 
we know in which the chromatin 
environment (Nucleosome Free 
Region (NFR), around a mono, 
di,-nucleosome, around a TF) of 
the DNA fragment.

Buenrostro et al,422023

Yan et tal, 2020



Analysis of ATAC-seq data

Sample processing ATAC-seq Data analysis
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Analysis of ATAC-seq data

• Overall analysis resemble ChIP-seq data analysis
• Description of particularities of ATAC-seq data analysis
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Peak 
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enrichment  

analysis
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analysis

Advanced analysis

Meta profiles / 
Clustering

Nucleosome  
positioning …

Post alignment 
processing & 

QC

Footprinting  
analysis
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Analysis of ATAC-seq data

• Some cleaning steps are required for ATAC-seq. For example:
• A large percentage of reads are derived from mitochondrial DNA. These reads are 

removed as mitochondrial genome is generally not of interest.
• Omni-ATAC (Corces et al, 2017)
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Analysis of ATAC-seq data

QC Mapping Peak 
detection
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Post alignment 
processing & 

QC

Adapted parameters for peak calling (MACS2) : --shift 75 --extsize 150 --nomodel -B --SPMR --keep-dup all --call-summits



Analysis of ATAC-seq data

109

QC Mapping Peak 
detection

Peak 
Annotation

Motif 
enrichment  

analysis

Differential  
analysis

Advanced analysis

Footprinting  
analysis

Meta profiles / 
Clustering

Nucleosome  
positioning …

Post alignment 
processing & 

QC



Footprinting analysis

• Tn5 cuts in open chromatin 
regions
• DNA is protected from cleavage 

at position of TF binding creating 
a “notch” in ATAC-seq signal
• Footprinting analysis identifies 

TF activities
• Height of the notch reflects TF 

activity
• Compare TF activity between 

different conditions Corces et al, 2019
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Footprinting analysis

111

• Volcano plots showing differential TF binding activity as predicted by TOBIAS footprinting analysis
in ATAC-seq data of NKp, iNK and mNK from Shin et al. (c) iNK vs NKp; (d) mNK vs NKp; (e) mNK vs
iNK.

• Each dot represents a TF
• TFs which activity is changing between the two compared developmental stages are colored (see 

color legend below volcano plots)


