Correlation of RNA-seq and ChIP-seq data

Stéphanie Le Gras (slegras@igbmc.fr)

We want to know how many up-regulated genes contain a peak for MITF. Compare **Gene names** of the chIPseq data (annotation step) and the RNAseq data (up-regulated genes).

- Tool: use Venny (<u>https://bioinfogp.cnb.csic.es/tools/venny/</u>)
- Datasets:
 - Use the file siMitfvssiLuc.up.annot.txt (upregulated genes detected by SARtools annotated with BioMart).
 - Download it from your history « RNA-seq data analysis ».
 - Open it with Excel and copy paste the content of column « Gene name » in Venny. You can name this part of the diagramme « RNA-seq »
 - Use the file mitf_peaks.annot.tsv (all chIPseq peaks detected in the second run of MACS2 and annotated with BEDtools closest)
 - Download it from your history « ChIP-seq data analysis »
 - Open it with Excel and copy paste the content of column « O » (the one with Gene names) in Venny. You can name this part of the diagramme « ChIP-seq »

Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data.

Tool: seqMINER

Datasets:

- Reference coordinated: MITF_peak_summits.bed (from your history "ChIP-seq data analysis")
- Density
- seqMINER accept a tab separated file formatted like:
 - Gene ID <tab> Expression Values
 - Aligned reads (available in chipseq/mapping):
 - Mitf.sort.bam
 - H3K4me3.sort.bam
 - pollI.sort.bam
 - RNA-seq data:
 - seqMINER accept a tab separated file formatted like: Gene ID <tab> Expression Values
 - Expression values used in our example are normalized read counts divided by gene length in Kb.
 - Let's generate this file!

In seqMINER, we are going to visualize and compare expression values of different genes within the same sample. Read count per gene can not be directly compared together as they are correlated to the gene length. In the file siMitfvssiLuc.complete.txt, you can find normalized values. We are going to scale them as if they were all of the same length.

Steps:

- 1. Extract transcript lengths [ensembl/BioMart]
- 2. As we are working on read counts per gene, compute a median of transcript length per gene [Galaxy]
- 3. Add the median of transcript lengths to the dataset siMitfvssiLuc.complete.txt [Galaxy]
- 4. Compute normalized and divided by median of transcripts length in kb values per gene on normalized for siLuc (rounded mean of normalized counts) [Excel]

- 1. In Ensembl/BioMart
 - 1. For all genes, extract the following information:
 - Gene stable IDs
 - Transcript stable IDs
 - Transcript length (including UTRs and CDS)
 - 2. Rename the file: hg38_ens105_transcriptLength.txt.gz (compressed .gz)

	3. Get results	Ensembl BLAST/	BLAT VEP Tools BioMart Downloads Help & Docs Blog Login/Register	
 No filt Select attribute 	er e	Human genes (GRCh38.p13) Filters [None selected] Attributes Gene stable ID Transcript stable ID Transcript length (including UTRs and CDS) Dataset [None Selected]	Enclosed and results of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compressed file (g2) Ist I and the feature of the compression of the co	. Export results
		In orc	ter to maintain service for all users, BioMart browser sessions running for more than 5 minutes are terminated. If you have	5

3. Create a new history « Prepare RNA-seq data for seqMINER ». Import the file hg38_ens105_transcriptLength.txt.gz to Galaxy (type: tabular (3), Genome: hg38 (4))

2.1. Use the tool « <u>Datamash</u> (operations on tabular data) » to group gene by Ensembl Gene Ids and compute the median on transcript length:

- Input tabular dataset: hg38_ens105_transcriptLength.txt.gz
- Group by fields: [column with Gene stable ID] (1)
- Input file has a header line: Yes
- Print header line: Yes
- Operation to perform on each group:
 - Type: Median
 - On column: [column with Transcript length (including UTRs and CDS)] (3)
- 2.2. Use the tool « **Compute** » to round median values:
 - Add expression: round(c2) (change accordingly if needed)
 - Input has a header line with column names? Yes
 - The new column name: rounded median(Transcript length (including UTRs and CDS))
- 2.3. Use the tool « Advanced Cut » to extract only column of interest:
 - File to cut: [Compute on data *] (result of step 2.2)
 - Cut by: fields
 - List of Fields: Column: 1 Column: 3 (change accordingly if needed)

Rename resulting dataset: Median_of_transcript_length.tsv

3.

- 1. Import the file siMitfvssiLuc.complete.txt (history "RNA-seq data analysis") to Galaxy (type: tabular, Genome: hg38).
- 2. Use the tool "Join two Datasets" to join the two datasets siMitfvssiLuc.complete.txt and Median_of_transcript_length.tsv
 - Join: siMitfvssiLuc.complete.txt
 - Using column: 1
 - With: Median_of_transcript_length.tsv
 - and column: 1
 - Keep the header lines: Yes
- 3. Rename the file siMitfvssiLuc.complete.wTranscriptLength.tsv
- 4. Download siMitfvssiLuc.complete.wTranscriptLength.tsv and open it in excel.

4. In Excel (or an equivalent), add 1 column:

1. siLuc (normalized and divided by median of transcripts length in kb) filled with the following formula (French ; English)

=ARRONDI(K2/Y2*1000/50;0) (K is the column : siLuc – Y is the column with round median) =ROUND(K2/Y2*1000/50;0)

Hint: here we divide values by 50 to get them in the range of the chIP-seq data that we are going to visualize along with them.

Z4	1 ‡	× v	f _x =A	RRONDI(K4	'Y4*1000/5 0	;0)														•
	н	I	L	к	L	м	N	0	Р	Q	R	S	т	U	v	w	x	Y	z	AA
1	norm.siMitf	3 norm.siMit	f4 baseMear	n siLuc	siMitf	FoldChange	log2FoldCha	stat	pvalue	padj	dispGeneEst	t dispFit	dispMAP	dispersion	betaConv	maxCooks	GroupBy(Gei	ound media	siLuc (normali	zed and divid
2	1351	. 124	4 1315.39	13	4 129	8 0.972	-0.041	-0.46	0.645747741	0.782845085	0.001	0.0034	0.0031	0.0031	TRUE	NA	ENSG000000	1025	26	
3	(D	0	0	D NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ENSG000000	874	0	
4	3961	. 356	0 3823.09	38	376	0.967	-0.048	-0.706	0.480237104	0.648238622	0.0026	0.0018	0.002	0.002	TRUE	NA	ENSG000000	1262	62	
5	670	68	7 670.09	6	67	8 1.027	0.038	0.326	0.744638528	0.852952976	0	0.0057	0.005	0.005	TRUE	NA	ENSG000000	2916	5	
6	1527	157	6 2094.64	26	8 155	2 0.588	-0.766	-10.233	1.412505274	3.784810984	0	0.0025	0.0022	0.0022	TRUE	NA	ENSG000000	2661	20	
7	(D	0	0	D NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ENSG000000	2021	0	
8	251	. 22	7 163.36		8 23	9 2.714	1.44	6.217	5.055611374	4.727784556	0	0.0203	0.018	0.018	TRUE	NA	ENSG000000	1556	1	
9	2938	293	5 2996.65	30	6 293	6 0.961	-0.058	-0.892	0.372458906	0.544873736	0	0.0021	0.0017	0.0017	TRUE	NA	ENSG000000	737	83	
10	2029	203	6 2003.56	19	203	2 1.029	0.042	0.563	0.573226269	0.726619733	0	0.0026	0.0021	0.0021	TRUE	NA	ENSG000000	1406	28	
11	1914	179	8 1773.66	16	1 185	5 1.097	0.134	1.689	0.091234250	0.186264839	0	0.0028	0.0025	0.0025	TRUE	NA	ENSG000000	3934	9	
12	406	41	5 392.67	3	5 41	0 1.095	0.131	0.893	0.371632444	0.544273796	0	0.009	0.0078	0.0078	TRUE	NA	ENSG000000	792	9	
13	1483	169	0 1267.32	9	8 158	6 1.675	0.744	7.241	4.459588935	5.521984919	0.0081	0.0035	0.0042	0.0042	TRUE	NA	ENSG000000	1757	11	
14	2939	293	2 3159.02	33	32 293	6 0.868	-0.204	-3.207	0.001340209	0.004767185	0	0.002	0.0016	0.0016	TRUE	NA	ENSG000000	3441	20	
15	68	5	0 44.35		50 5	9 2.01	1.007	2.337	0.019435172	0.050444348	0	0.0721	0.0637	0.0637	TRUE	NA	ENSG000000	4644	0	
4		siMitfvssiL	uc.comple	te.wTransc	+															
																			+	100 %

In Excel (or an equivalent), create a new file with the following columns **without headers**:

- Id (contains ENSEMBL IDs)
- siLuc (normalized and divided by median of transcripts length in kb)
 Hint: copy and paste normalized data with a special paste by value so that it doesn't try to copy the formula

Save the file as a Text (separator: tabs) (.txt) file named RNAseq_data_ready_for_seqMINER.txt

В	С
26	
0	
62	
5	
20	
0	
1	
	B 26 0 62 5 20 0 1

Use seqMINER to visualize at the same time chIP-seq data along with RNA-seq data

- Load MITF_peak_summits.bed (from your history "ChIPseq data analysis") as reference coordinates.
- Load the 3 bam files (directory chipseq/mapping):
 - mitf.sort.bam
 - H3K4me3.sort.bam
 - pollI.sort.bam

Be careful, make sure that in Options > Gene profile, Gene profile analysis is not selected before clicking on « **Extract data** ».

	Clusters Heatmap	
mitf.sort.bam H3K4me3.sort pc	Clusters Heatmap Ill.sort.bam KMeans seed 43723520 Save heat Color palette Contrast Cluster 1: 127 elements Cluster 2: 218 elements Cluster 3: 1158 elements Cluster 3: 1158 elements Cluster 5: 404 elements Cluster 7: 155 elements Cluster 8: 114 elements Cluster 9: 534 elements Cluster 10: 1291 elements Cluster 10: 1291 elements Peakes(3320) Merged dataset profile Mean profile	↑↓
	Export selected clusters Save profile	