
Functional analysis of RNA-seq data

Céline Keime keime@igbmc.fr

Analysis of RNA-seq data

analysis, integration with other data, ...

Functional analysis

- A lot of functional analysis tools available
 - Initially developed for microarray data
 - e.g. GO tools listed in
 - http://geneontology.org/docs/go-enrichment-analysis/
 - Methods specific to RNA-seq data
 - Bioconductor packages
 - Goseq (Young et al., Genome Biology 2010;11:R14)
 - SeqGSEA (Wang et al. BMC Bioinformatics 2013, 14(Sup5):S16)
 - GSAASeqSP (Xiong et al Scientific Reports 2014; 4:6347)
- DAVID will be used for this practical session because
 - graphical interface & free software
- DAVID
 - Database for Annotation, Visualization and Integrated Discovery
 - https://david.ncifcrf.gov/
 - A very interested article describing how to use DAVID : Huang et al. Nature Protocols 2009;4(1):44-57.

DAVID

Annotation Summary Results

- Current Gene List: demolist1 Current Background: Homo sapiens
- Disease (1 selected)
- Functional_Categories (3 selected)
- Gene_Ontology (3 selected)
- General Annotations (0 selected)
- Literature (0 selected)
- Main_Accessions (0 selected)
- Pathways (3 selected)
- Protein_Domains (3 selected)
- Protein_Interactions (0 selected)
- Tissue_Expression (0 selected)

Red annotation categories denote DAVID defined defaults

Combined View for Selected Annotation

Functional Annotation Clustering Functional Annotation Chart Functional Annotation Table

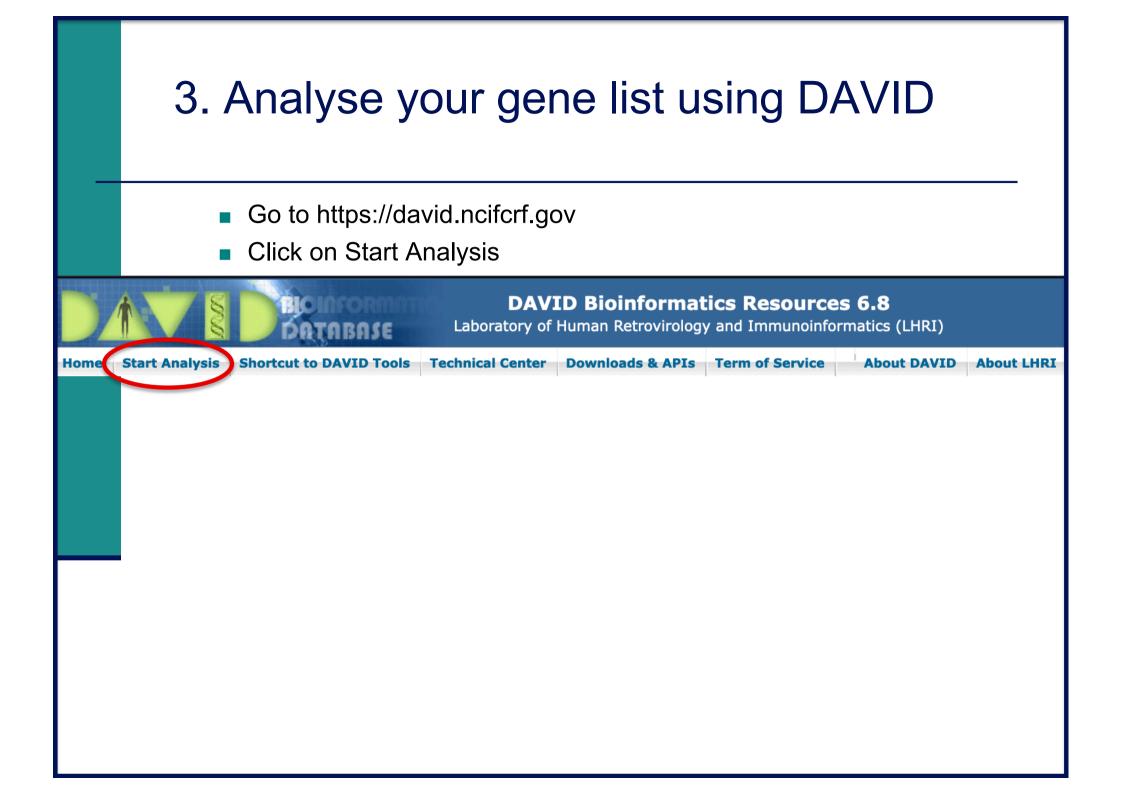
Different sources of annotation

- Disease (OMIM)
- Gene Ontology
- Pathways (KEGG, Biocarta)
- Protein Domains (InterPro, SMART)
- Protein Interaction (BIND)

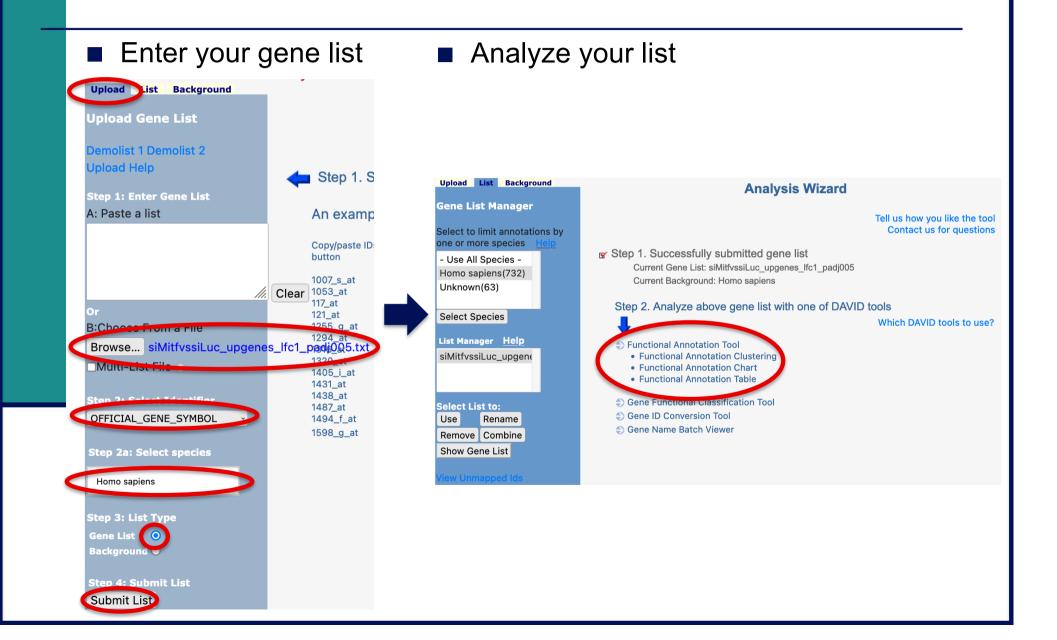
Different tools

. . .

- Functional Annotation Clustering
 - Cluster functionally similar terms associated with a gene list into groups
- Functional Annotation Chart
 - Identify enriched annotation terms associated with a gene list
- Functional Annotation Table
 - Query associated annotations for all genes from a list


- Use DAVID to perform functional analysis of genes significantly over-expressed in siMitf vs siLuc samples
 - Using the thresholds : adjusted p-value < 0.05 and log₂(Fold-Change) > 1
- For this purpose :
 - 1. Select over-expressed genes using the Filter tool on Galaxy
 - Input dataset : siMitfvssiLuc.up.annot.txt

In your history or dataset 21 in "NGS data analysis training Strasbourg" history


- Threshold : log₂(Fold-Change) > 1
 Indeed, genes in siMitfvssiLuc.up.annot.txt file have already been selected with adjusted p-value < 0.05
 (cf "Threshold of statistical significance" in SARTools advanced parameters)
- Create a file with gene name for all these genes using the Cut tool on Galaxy
- 3. Analyse this gene list using DAVID

1. Select over-expressed	Igenes
Among significantly differentially expressed genes with log ₂ (Fold-Change) > 1	ed genes, select
Filter data on any column using simple expressions (Galaxy Version 1.1.1)	
Filter C 28: siMitfvssiLuc.up.annot.txt Dataset missing? See TIP below. With following condition C14>1	29: Filter on data 28 (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
Double equal signs, ==, must be used as shown above. To filter for an arbitrary str Select tool.	
Number of header lines to skip	Gene stable ID siLuc2 siLuc3 siMitf3 si
	ENSG00000018408 4685 5261 18762 22 ENSG00000081189 1716 1806 8410 97
	ENSG00000081189 1716 1806 8410 97 ENSG00000106772 3063 3316 12095 13
	ENSG00000124942 309 415 5096 61

2. Create a list of gene	e names
 Select associated gene names in the 	e previous table
Cut columns from a table (Galaxy Version 1.0.2)	습 •
Cut columns	
C29 Delimited by Tab From D D 29: Filter on data 28 Email notification Send an email notification when the job completes.	30: Cut on data 29 794 lines, 100 comments format: tabular, database: ?
siMitfvs	ssiLuc_upgenes_lfc1_padj005.txt file

3. Analyze your gene list using DAVID

- What are the 10 most enriched functional annotation terms among annotations of the genes from your list ?
 How many genes are annotated with each of these terms ?
 Which genes are annotated with the most enriched GO term ?
- *KIT ligand (KITLG)* gene is annotated with this GO term.
 What are all associated annotations for this gene ?
 Among these annotations you will find the KEGG pathway "PI3K-Akt signalling pathway".
 Are other genes from your list member of this pathway ?

- 3. We would like to represent on an heatmap the variation of expression of all these genes (list genes in PI3K-Akt signalling pathway) in the four samples
 - → Prepare a file with the normalized read counts for these genes in all samples using Galaxy, and use Heatmapper (http://www.heatmapper.ca/expression/) to perform the heatmap
 - 1. Download list genes in PI3K-Akt signalling pathway from DAVID :

Click on "Show all list genes" on the bottom of the page representing PI3K-AKT signalling pathway*

Help and Manu

	vascular endothelial growth factor D(VEGFD)
	vitronectin(VTN)_
	von Willebrand factor(VWF)
_	

Show All List Genes

Show All Pathway Genes

then right click on Download File (top right) and save link target on disk

Gene Report

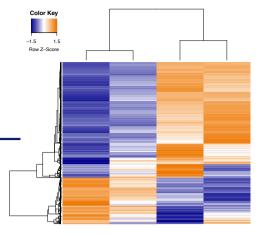
* You should be on this page at the end of question 2. Otherwise you will find this page in DAVID Functional Annotation Table by searching « PI3K » and clicking on the corresponding link (PI3K-Akt signalling pathway)

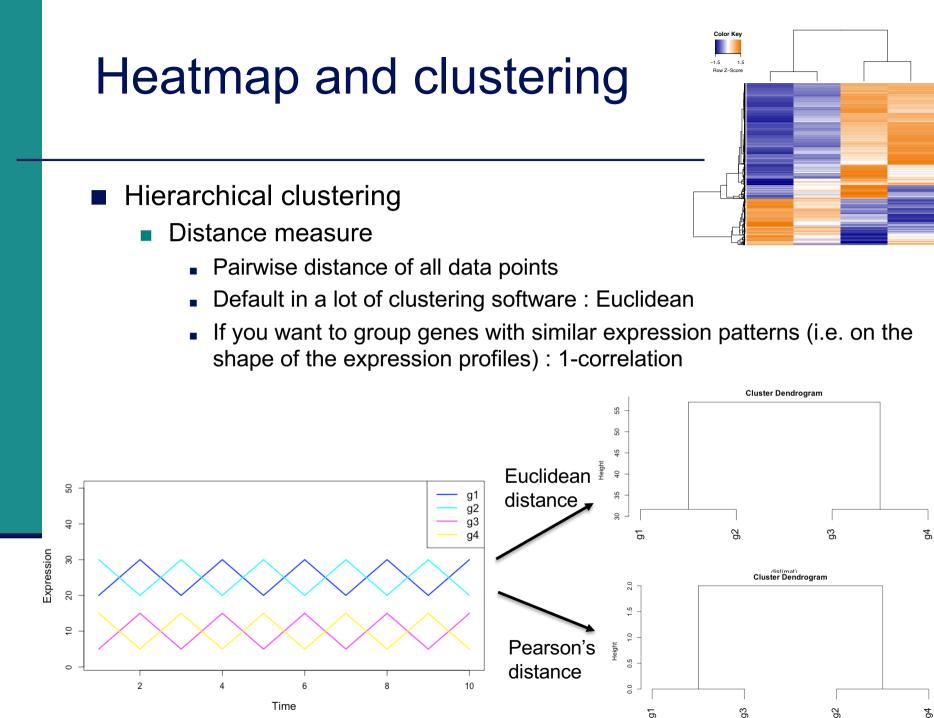
We will join the file obtained at step 1 with siMitfvssiLuc.up.annot.txt using the common column (containing gene symbol) \rightarrow We will thus retain only PI3K-Akt signalling genes from siMitfvssiLuc.up.annot.txt file.

- 2. Import pi3k_akt_signalling_genes.txt file on Galaxy
- 3. On Galaxy, join siMitfvssiLuc.up.annot.txt with pi3k_akt_signalling_genes.txt on their common column (Gene name)
- 4. On Galaxy, prepare a file with 5 columns : Gene name and four columns containing normalized read counts in the four samples (use the **Cut** tool and the results obtained at step 4).
- 5. Download this file and change file extension to txt
- 6. Use this file to perform an heatmap representing the variation of expression of these genes in the four RNAseq samples using Heatmapper (http://www.heatmapper.ca/expression/) after changing the name of the first column to NAME

Heatmap and clustering

Heatmap

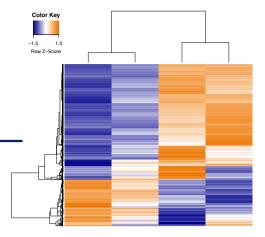

Colour-scaled representation of the data


Data represented :

- Expression
 - Normalized and divided by gene length
 - ightarrow to compare the expression level of several genes
- Expression variation
 - log₂(Fold-Change)

 $\log\!2 \rightarrow$ over- and under-expression are on symmetric scales

- Z-score
- → row z-score = [Value mean(row)] / standard deviation(row)



as.dist(1 - cor(t(mat)))

Heatmap and clustering

- Hierarchical clustering
 - Distance measure
 - Pairwise distance of all data points
 - Default in a lot of clustering software : Euclidean
 - If you want to group genes with similar expression patterns (i.e. on the shape of the expression profile) : 1-correlation
 - To group points
 - Clustering method
 - To join groups of points
 - Average : distance between two groups = average distance between all pairs of points from the two different groups

