
Analysis of ChIP-seq data (answers to questions)

Exercise 1: mapping statistics

- 2.
 - Click on the button + to create a new history
 - Click on the history name "Unnamed history", erase "Unnamed history", enter "ChIP-seq data analysis" and press enter
- 3.
 - Click on "View all histories"
 - Drag the two files 22:mitf.bam and 23:ctrl.bam from the imported history
 « NGS data analysis training Strasbourg » and drop them to your current
 history "ChIP-seq data analysis".

Exercise 1: mapping statistics

- 4
 - Search for "flagstat" in the search field (tool panel)
 - Click on the name of the tool
 - Click on @ to select multiple datasets
 - Select all 2 datasets
 - Click on ✓ Execute

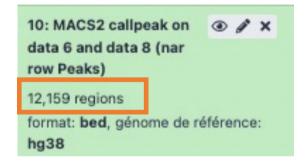
Sample name	No. of raw reads	No. of aligned reads
MITF	31,334,257	23,015,734
Ctrl	29,433,042	19,857,374

Exercise 2: duplicate reads estimate

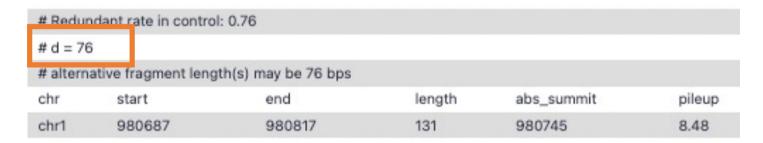
- 1.
 - Search for "markdup" in the search field (tool panel)
 - Click on the name of the tool
 - Click on 😰 to select multiple datasets
 - Select the 2 bam files
 - Select validation stringency: Silent
 - Click on ✓ Execute
 - Open the datasets [MarkDuplicates on data * : MarkDuplicate metrics]

Sample name	No. of raw reads	No. of aligned reads	No. of duplicate reads
MITF	31,334,257	23,015,734	16,806,838
Ctrl	29,433,042	19,857,374	15,070,921

Exercise 3: Visualization of the data


- 1.
 - Idh1 -> No peak
 - NPAS2 -> peak
 - AP1S2 -> Peak,
 - PABPC1I -> No peak
 - Park7 -> No peak
 - Pmel -> Peak
 - Cdk2 -> Peak
 - Actb -> No peak

Exercise 4: peak calling


- 1.
 - Search for "macs2 callpeak" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Are you pooling Treatment Files? No
 - ChIP-Seg Treatment File: [mitf bam file marked by MarkDuplicates] (1)
 - Do you have a Control File? Yes
 - Are you pooling Control files? No
 - ChIP-Seq Control File: [control bam file marked by MarkDuplicates] (2)
 - Effective genome size: H.Sapiens (2.7e9)
 - Outputs: select Peaks as tabular file, summits, Summary page (html), Plot in PDF
 - Click on ✓ Execute

Exercise 4: peak calling

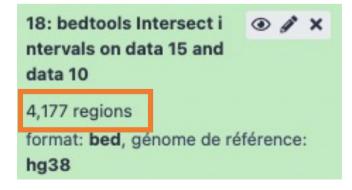
- 2.
 - There is 12,159 peaks

• 3. Look at the tabular file

• The d value estimated by MACS seems a bit small. Let's try to re-run MACS with the expected fragment size : 200

Exercise 5: peak calling

- 1.
 - Click on the name of one of the datasets generated by Macs2.
 - Click on to display Macs2 form with the same parameters as for the previous run of Macs2
 - In Build Model:
 - select Do not build the shifting model (--nomodel)
 - Set extension size: 200
 - Click on ✓ Execute
- 2.
 - 7,890 peaks are now found

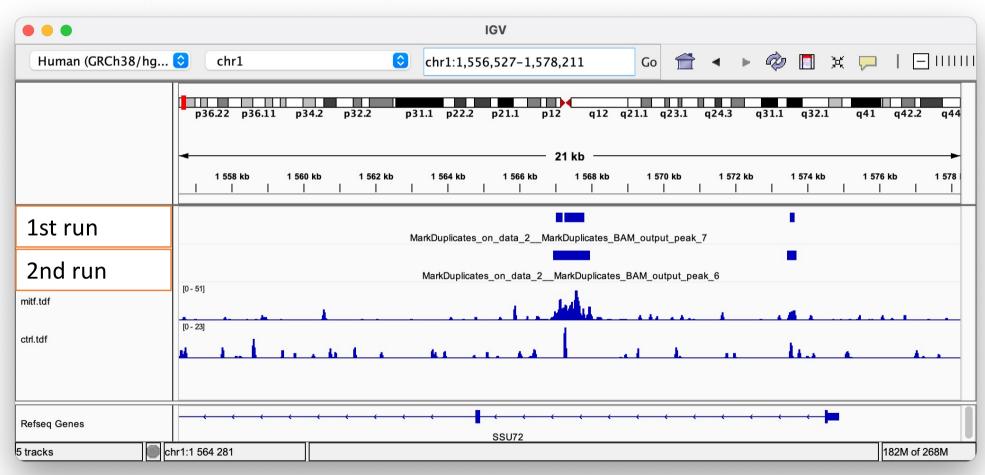


 NOTE: the graphs (showing the estimate of d value) are no longer generated

1.

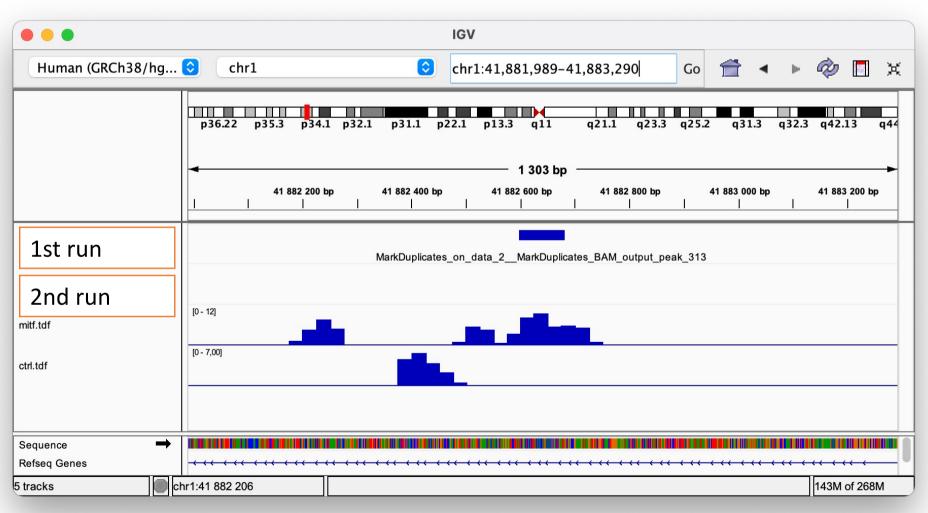
- Search for "Intersect" in the search field (tool panel)
- Click on the name of the tool bedtools Intersect intervals
- Set parameters:
 - File A to intersect with B: [MACS2 callpeak on data * and data * (narrow Peaks)] (1st run of MACS)
 - Combined or separate output files
 - One output per file 'input B' file
 - File B to intersect with A: [MACS2 callpeak on data * and data * (narrow Peaks)] (2nd run of MACS)
 - Calculation based on strandedness? Overlaps on either strand
 - What should be written to the output file? Write the original entry in A for each overlap (-wa)
 - Report only those alignments that **do not** overlap the BED file: Yes

4,177 regions are found

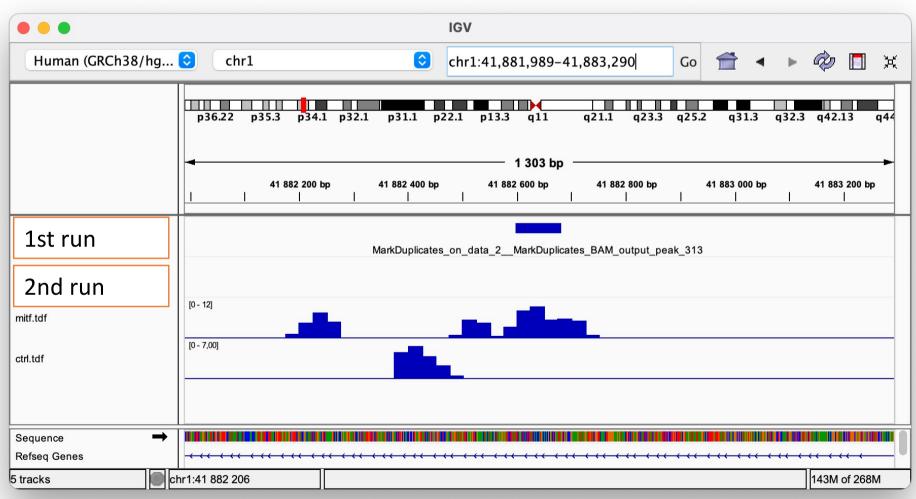


2.

- 1. In Galaxy, click on for the two datasets named [MACS2 callpeak on data * and data * (narrow Peaks)] and save the files on your computer
- 2. Go to IGV and load the two files along with the two tdf files already loaded (mitf.tdf and ctrl.tdf)
- 3. In Galaxy, click on the of the dataset named [bedtools intersect intervals on data * and data *]


_									_
Chrom	Start	End	Name	Score	Strand	ThickStart	ThickEnd	ItemRGB	BlockCount
chr1	983819	983925	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_2	53		6.75700	9.07098	5.31956	50
chr1	1586289	1586365	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_10	14		4.10564	4.39929	1.45337	7
chr1	1728644	1728730	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_11	15		4.27812	4.90906	1.52693	66
chr1	1807103	1807179	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_12	44		5.62660	8.09168	4.44141	33
chr1	2167152	2167228	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_19	38		5.44460	7.46705	3.86461	48
chr1	3276552	3276628	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_21	15		4.27812	4.90906	1.52693	52
chr1	3444380	3444456	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_22	13		3.43160	4.33100	1.39739	40
chr1	3681035	3681111	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_23	13		4.05353	4.26549	1.34476	59
chr1	3900155	3900272	MarkDuplicates_on_data_1MarkDuplicates_BAM_output_peak_24	26		4.85117	6.12167	2.65739	64

SSU72 (chr1:1556527-1578211)



Exercise 6: compare the two MACS runs

chr1:41882599-41882681

We are going to keep the second run of MACS

For the following dataset of the second run of MACS2, rename the datasets:

- [MACS2 callpeak on data * and data * (summits in BED)] ->
 MITF_peak_summits.bed
- [MACS2 callpeak on data * and data * (narrow Peaks)] -> MITF_peaks.narrowPeak

Exercise 7: peak annotation

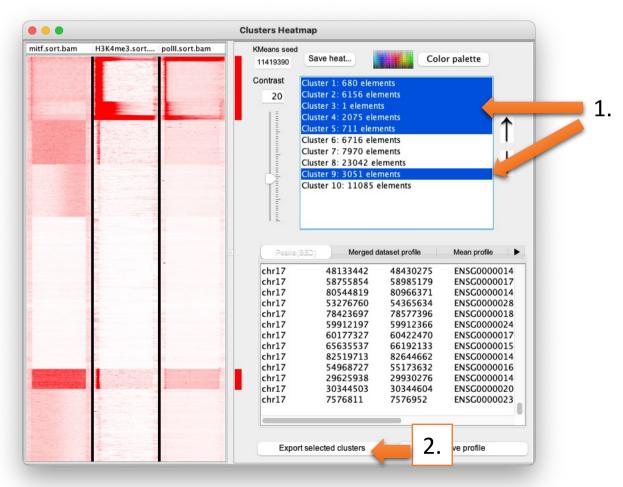
Search for "closest" in the search field (tool panel)

- **BED/bedGraph/GFF/VCF/EncodePeak file:** MITF_peaks.narrowPeak (second run of MACS2)
- Overlap with: will you select a BED/bedGraph/GFF/VCF/EncodePeak file from your history or use a built-in GFF file?
 - Use a BED/bedGraph/GFF/VCF/EncodePeak file from the history
 - Select a BED/bedGraph/GFF/VCF/EncodePeak file: 25:hg38_ens105_ucsc.bed
- How ties for closest feature should be handled: first Report the first tie that occurred in the B file
- In addition to the closest feature in B, report its distance to A as an extra column: Yes
- Add additional columns to report distance to upstream feature. Distance defintion:
 - Report distance with respect to A. When A is on the strand, « upstream » means B has a higher (start,stop). (-a)
 - Choose first from features in B that are upstream of feature in A: Yes
- Click on ✓ Execute
- Rename the file [Closest regions from data * and data *] -> mitf_peaks.annot.tsv.

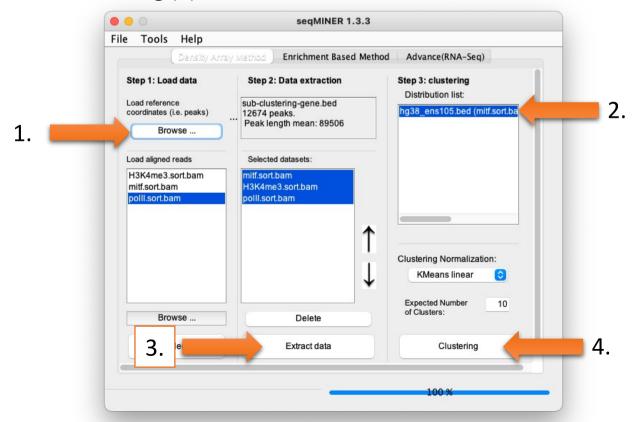
Exercise 8: de novo motif discovery

- 1.a
 - Search for "Sort" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Sort Dataset: MITF_peak_summits.bed (second run of MACS2)
 - on column: Column: 5
 - with flavor: Numerical sort
 - everything in: Descending order
 - Click on ✓ Execute
- 1.b
 - Search for "select first" in the search field (tool panel)
 - Click on the name of the tool
 - Set parameters:
 - Select first: 800
 - From: [Sort on data *] (dataset generated in 1.a)
 - Click on ✓ Execute

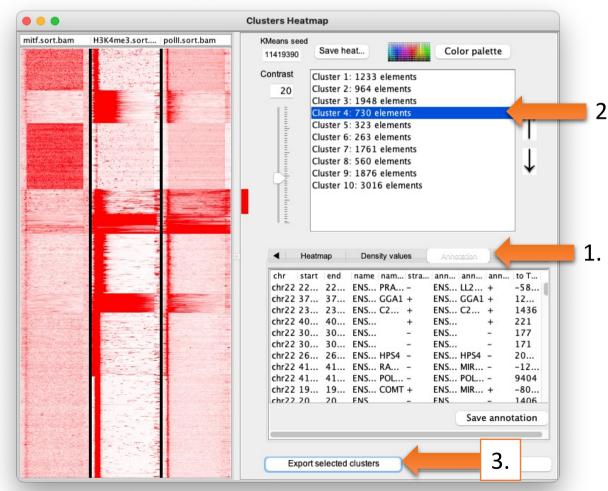
Exercise 8: de novo motif discovery

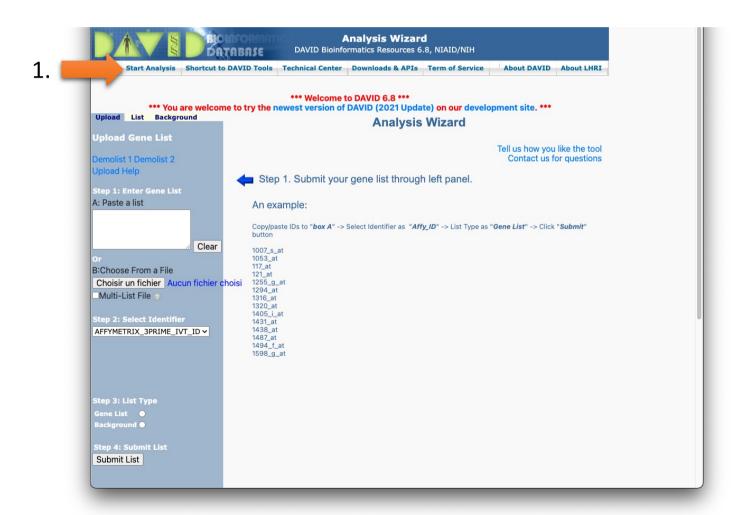

2.

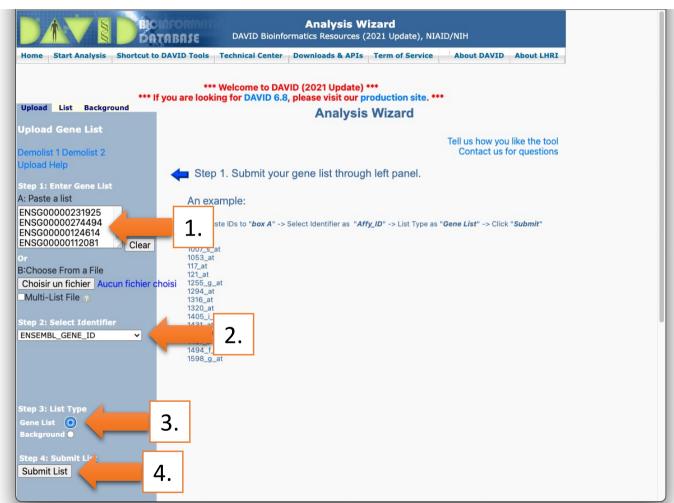
- Search for "slop" in the search field (tool panel)
- Click on the name of the tool bedtools SlopBed
- Set the parameters
 - BED/bedGraph/GFF/VCF/EncodePeak file: [Select first on data *] (results of step 1.b.)
 - Genome file:
 - Locally installed Genome file
 - **Genome file:** Human Dec. 2013 (GRCh38/hg38) (hg38)
 - Choose what you want to do: Increase the BED/VCF/GFF entry by the same number of base pairs in each direction. (default)
 - Number of base pairs: 50
 - Click on ✓ Execute

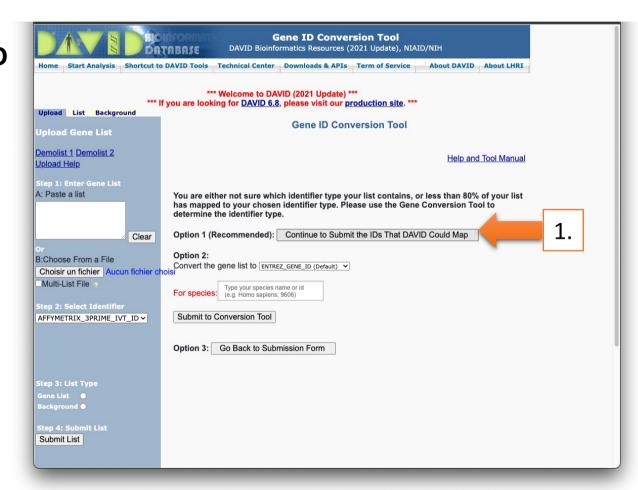

Exercise 8: de novo motif discovery

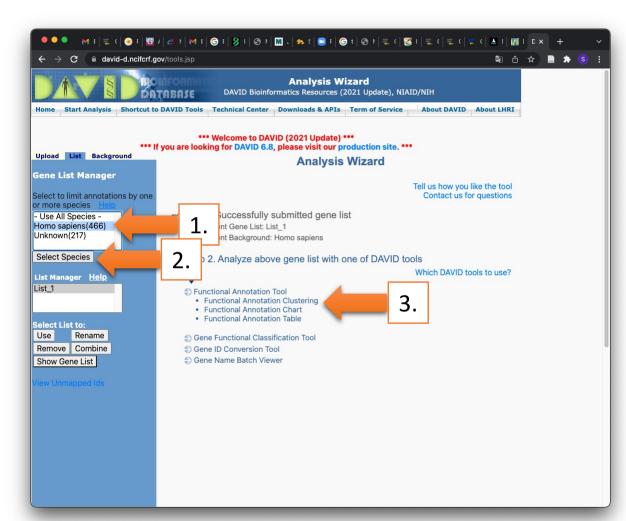
- 3.
 - Search for "getfastabed" in the search field (tool panel)
 - Click on the name of the tool bedtools GetFastaBed
 - Set the parameters:
 - BED/bedGraph/GFF/VCF/EncodePeak file: [bedtools SlopBed on data *] (the dataset generated in 2)
 - Choose the source for the FASTA file: Server indexed files
 - Fasta_id: Human (homo sapiens): hg38
 - Click on ✓ Execute
 - Rename the file peakSummits_+/-50nt_top800.fasta
- 4.
 - Expand the box of the dataset peakSummits_+/-50nt_top800.fasta and click on to download the file
- 5.
 - Go to MEME-chIP website and run the tool with the fasta file peakSummits_+/- 50nt_top800.fasta as input file and with default parameters.


- 1.
 - Select clusters 1, 2, 3, 4, 5, 9 (1)
 - Click on Export Selected clusters (2) and save the file as sub-clustering-gene.bed

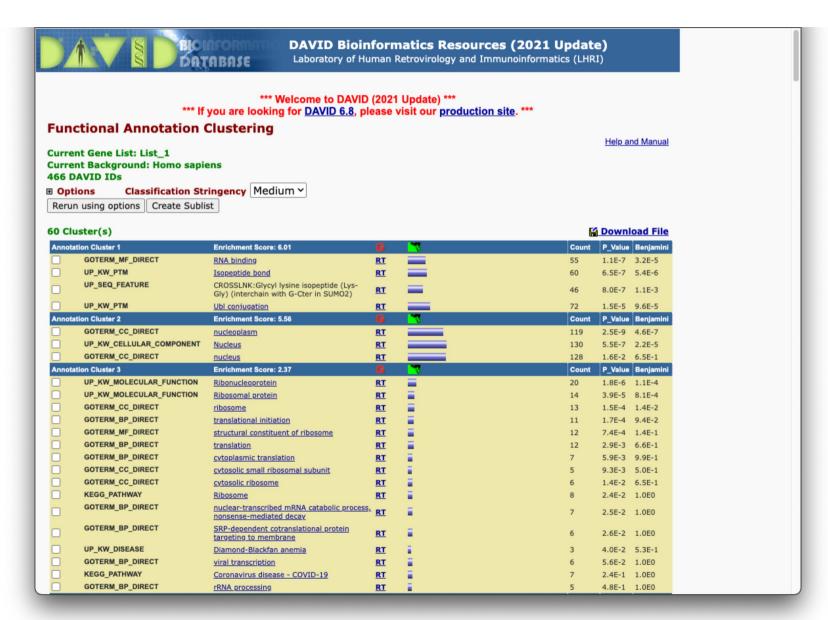

- 1.
 - Import the file sub-clustering-gene.bed. (You can use the one provided in chipseq/seqminer).
 - Click on Browse (1), go to the directory which contains the file and click on open.
 - Remove previous distribution (2)
 - Click on Extract data (3)
 - Click on Clustering (4)


- Go to Annotation (1)
- Click on cluster 4 (2)
- Click on Export selected cluster (3)


- Go to DAVID website https://david.ncifcrf.gov/
- Click on Start Analysis (1)


- Fill in the form:
 - Paste a list (1): Copy and paste Ensembl
 Gene IDs from the Cluster4.xls file
 - Select Identifier (2) (drop down list): ENSEMBL_GENE_ID
 - List Type (3): Gene List
 - Click on **Submit List** (4)

• Click on Continue to Submit IDs That DAVID Could Map (1)



- Select to limit annotations by one or more species (left panel)
 - Select Homo sapiens (466) (1)
 - Click on **Select Species** (2)
- Click on Functional Annotation Tool (3)

- Keep all default
- Click on Functional
 Annotation Clustering
 (1)

