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De novo transcriptome assembly 

!  Purpose 
!  Analyse transcriptome on organisms without reference genome 
!  Detect chimeric transcripts from chromosomal rearrangements 

!  Read coverage need to be high enough to build contigs 
     Contig : set of overlapping sequences  
      that together represent a DNA region 

!  Challenges (as for genome assembly) 
!  Repetitive regions, sequencing errors  

!  And more challenges specific to transcriptome assembly 
!  Transcriptome coverage highly dependent on gene expression 
!  Ambiguities in transcriptome assembly due to alternative splicing, 

alternative promoter usage, alternative polyA, overlapping transcripts 
 

Contig 1 Contig 2 

Consensus sequence 



Programs for de novo transcriptome assembly 

! Different programs 
!  Velvet/Oases (Shulz et al. Bioinformatics 2012;28(8):1086-1092) 
!  Trans-ABySS (http://www.bcgsc.ca/platform/bioinfo/software/trans-abyss) 
!  Trinity (Haas et al. Nature Protocols 2013; 8:1494–1512) 
!  SOAPdenovo-Trans (http://soap.genomics.org.cn/SOAPdenovo-Trans.html) 
!  Commercial software : CLC cell, Newbler 
 

! Comparisons 
!  On 454 data : Mundry et al. (Plos One 2012;7(2):e31410)  
!  On Illumina data : Zhao et al. (BMC Bioinformatics 2011; 12(14):S2) 
!  Which method will perform best is a function of read length, 

sequencing coverage and transcriptome complexity 

 



De novo transcriptome assembly : 
general method 

!  Breaks reads into k-mers (short sub-sequences of length k) 

!  Arranges k-mers into a graph structure (De Brujn graph) 
!  Nodes : all sub-sequences of length k present in the sample 
!  Arcs : link nodes to represent all sequences present in the sample 

!  Parse graph in order to create contigs 
!  Look at the coverage to decide to follow a path or to remove it  
    in order to avoid sequencing errors 

!  Choice of k-mer length greatly influence result of the assembly 
!  Functional annotation of contigs (with Gene Ontology e.g. Blast2GO, 

screen for Open Reading Frames, for known protein domains, ..) 

e.g. 1 read = ACTG, k=3 è k-mers = ACT, CTG 
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Genome-guided assembly methods 

!  Use spliced reads to reconstruct the transcriptome 
1.  Build a transcriptome assembly graph 
2.  Parse the graph into transcripts (1 path = 1 isoform) 

è  Scripture report all isoforms that are compatible with the reads 
è  Cufflinks reports the minimal number of compatible isoforms  

 i.e. a minimal number of isoforms such that all reads are included in at least 
one path à use read coverage to decide which combination of isoforms is 
most likely to originate from the same RNA 

Scripture (Guttman et al. Nature Biotechnology 2010;28(5):503-10) 
Cufflinks (Trapnell et al. Nature Biotechnology 2010;28(5):511-5) 
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Genome annotations 

! Generally provided in a GFF/GTF file 
!  GFF: General Feature Format / GTF : General Transfert Format 
!  Text file format to describe genes and other features associated to 

DNA, RNA and protein sequences 
!  Specifications : http://www.sanger.ac.uk/resources/software/gff/spec.html 
!  eg human Ensembl 75 GTF file   
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Gene-level quantification 

 
 

! Exon-union method 
 Count reads mapped to all exons from all isoforms of the gene 

 
 
 

 
! Exon-intersection method 

 Count only reads mapped to its constitutive exons 
  

	


	

 	


	
è reduce power for differential expression analysis 
 

Isoform 1 

Isoform 2 

Gene 



Gene-level quantification 

! Exon-union method 
!  HTSeq (Anders et al., Bioinformatics 2015;31(2):166-9) 



Application 

!  htseq-count has been used on the 4 RNAseq samples from MITF 
dataset to quantify gene expression, using 
!  BAM alignment files 

!  Only reads with one reported alignment are considered 
!  intersection_nonempty method 
!  Annotations from Ensembl v75 

!  ftp://ftp.ensembl.org/pub/current_gtf/homo_sapiens/
Homo_sapiens.GRCh37.75.gtf.gz 

 



Application : results 

!  One tabulated text file per sample  
!  Number of reads for each Ensembl gene 

!  Summary of quantification results 

Sample	
  ID	
   Sample	
  
name	
  

%	
  of	
  
assigned	
  
reads	
  

	
  %	
  of	
  no	
  
feature	
  
reads	
  

%	
  of	
  
ambiguous	
  

reads	
  
TSB-­‐11_5_S1	
   siLuc2	
   87.42	
   	
  8.52	
   4.05	
  
TSB-­‐12_6_S1	
   siLuc3	
   87.13	
   	
  8.88	
   3.99	
  
TSB-­‐13_19_S	
   siMi83	
   87.06	
   	
  8.91	
   4.03	
  
TSB-­‐14_12_S2	
   siMi84	
   88.07	
   	
  7.86	
   4.07	
  



Transcript-level quantification 

!  Some reads cannot be assigned unequivocally to a transcript 

!  Alexa-seq (Griffith et al. Nature methods 2010;7(10):843-7) 

 Count only reads that map uniquely to a single isoform 
 è Fails for genes that do not contain unique exons from which to 
estimate isoform expression 

!  Cufflinks (Trapnell et al. Nature Biotechnology 2010;28(5):511-5) 
     MISO (Nature Mathods 2010 Dec;7(12):1009-15) 

!  Construct a likelihood function that models the sequencing process  
!  Calculate isoforms abundance estimates that best explain reads 

observed in the experiment 

Isoform 1 

Isoform 2 
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Normalization : why ? 

!  To compare RNA-seq libraries 
!  with different sizes, eg : 

 
 
!  To compare the expression level of several genes within a library 
      Indeed read counts depend on 

!  Expression level 

!  Gene length 

!  Library size 
 

Sample	
  ID	
   Sample	
  name	
   Total	
  number	
  of	
  reads	
  
TSB-­‐11_5_S1	
   siLuc2	
   44,340,015	
  
TSB-­‐12_6_S1	
   siLuc3	
   49,763,265	
  
TSB-­‐13_19_S2	
   siMi83	
   42,595,950	
  
TSB-­‐14_12_S2	
   siMi84	
   39,065,527	
  



Different normalization methods 

!  Based on distribution adjustment 
!  Total read count  

!  Motivation  
Higher library size è higher counts 
!  Method  
Divide counts by total number of reads 

!  Upper quartile (Bullard et al. BMC Bioinformatics 2010;11,94) / Median 
!  Motivation  
Total read count is strongly dependent on a few highly expressed transcripts 
!  Method  
Divide counts by the upper quartile/median of the counts different from 0 

!  Quantile (Bolstad et al. Bioinformatics 2003; 19:185–93) 
!  Assumption  
    Read counts have identical distribution across libraries 
!  Method  
    Count distributions are matched between libraries 
 
 



Different normalization methods 

! Take into account gene/transcript length 
!  RPKM (Mortazavi et al. Nat Methods 2008;5:621–8), FPKM 
!  Reads (Fragments) per Kilobase per Million mapped reads 
!  Assumption 

!  Read counts =f(expression level, gene length, library size) 
!  Method 

!  Divide counts by gene length (kb) and total nb of reads (million) 
!  Allows to compare expression levels between genes 

 



Different normalization methods 

! Based on the “effective library size” concept 
!  Assumption  

!  Most genes are not differentially expressed 

!  2 methods 
!  Trimmed Mean of M values (Robinson et al. Genome Biol. 2010;11:R25) 
!  DESeq normalization (Anders et al. Genome Biol. 2010;11:R106) 



Which normalization method to choose ? 

!  Comparison on 4 real and 1 simulated dataset 

!  Summary of comparison results 

-  : the method provided unsatisfactory results for the given criterion 
+ : satisfactory results 
++ : very satisfactory results 

(Dillies et al. Brief. Bioinformatics 2013 Nov;14(6):671-83)  



DESeq normalization method 

 lib1  lib2  lib3      …  lib j  lib n  
  

gene1  468  475  501  
gene2  45  56  76 
gene3  2576  560  578 
gene4  1678  1798  1867 
… 

gene i     xij 

n : number of samples to compare 

xij : number of reads  
      for gene i in sample j 



DESeq normalization method 

 lib1  lib2  lib3      …  lib j  lib n  
  

gene1  468  475  501  
gene2  45  56  76 
gene3  2576  560  578 
gene4  1678  1798  1867 
… 

gene i     xij 

Normalization factor for library j : 
 
 
 
 
è  Each value is divided by the geometric mean of its row 
è  Normalization factor = median of all these ratios 

n : number of samples to compare 

xij : number of reads  
      for gene i in sample j 



DESeq normalization method 

 lib1  lib2  lib3      mean    
gene1  468  475  501   m1=481.1263 
gene2  45  56  76   m2=57.64187 
gene3  2576  560  578   m3=941.2115 
gene4  1678  1798  1867   m4=1779.271 

     

Normalization factor for library j : 
 
 
 



DESeq normalization method 

 lib1  lib2  lib3      mean    
gene1  468 / m1  475 / m1  501 / m1   m1=481.1263 
gene2  45 / m2  56 / m2  76 / m2   m2=57.64187 
gene3  2576 / m3  560 / m3  578 / m3   m3=941.2115 
gene4  1678 / m4  1798 / m4  1867 / m4   m4=1779.271 

  
    

Normalization factor for library j : 
 
 
 



DESeq normalization method 

 lib1  lib2  lib3      mean    
gene1  468 / m1  475 / m1  501 / m1   m1=481.1263 
gene2  45 / m2  56 / m2  76 / m2   m2=57.64187 
gene3  2576 / m3  560 / m3  578 / m3   m3=941.2115 
gene4  1678 / m4  1798 / m4  1867 / m4   m4=1779.271 
 
median  0.9577858  0.9793598  1.0452989 

  
    

Normalization factor for library j : 
 
 
 
 
 

normalization factors  



Application 

!  The DESeq normalization method has been used to normalize 
the 4 RNA-seq samples from MITF dataset, using R and 
DESeq2 Bioconductor package available in 

     http://bioconductor.org/packages/release/bioc/html/DESeq2.html 
!  Resulting normalization factors  

Sample	
  ID	
   Sample	
  name	
   Total	
  number	
  
of	
  reads	
  

Normaliza9on	
  
factors	
  

TSB-­‐11_5_S1	
   siLuc2	
   44,340,015	
   1.0141592	
  

TSB-­‐12_6_S1	
   siLuc3	
   49,763,265	
   1.1547005	
  

TSB-­‐13_19_S2	
   siMi83	
   42,595,950	
   0.9725945	
  

TSB-­‐14_12_S2	
   siMi84	
   39,065,527	
   0.8927402	
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Data exploration 

! Exploration and visualisation of data 
!  Essential step before any analysis 
!  Allows data quality assessment and control 
!  Eventually leads to remove data with insufficient quality 



Data exploration 

!  Samples clustering 
!  Distance that could be used  

!  d=1-ρ (ρ=Spearman correlation coefficient) 
!  SERE coefficient (Schulze et al. BMC Genomics 2012;13:524) 
    Simple Error Ratio Estimate 
                     Observed standard deviation between two samples 
                  Value that would be expected from an ideal experiment 
    SERE = 0 è data duplication 
    SERE = 1 è technical replication  
    SERE > 1 è biological variation 

!  Multivariate analyses 
!  Useful for visualizing the overall effect of experimental covariates 

and batch effects 
!  e.g. Principal Component Analysis è Anders et al. proposed data 

transformation methods that can be used before performing PCA 

SERE= 



Data exploration 

!  Example of data clustering with SERE coefficient 
!  A-B : 2 different conditions, 1-2-3 : replicate samples 
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Data exploration 

!  Example of PCA calculated on variance stabilized data from 24 RNA-seq 
libraries : first factorial plan 

     the 1st axis explains 81% and the 2nd 8% of the variability 

!



Data exploration 

!  Example with batch effect 
!  PC1 : 30% of the variability = batch effect 
!  PC2 : 22% of the variability = WT vs treatment 
è This batch effect has to be taken into account in statistical analysis 

WT 
Treated 

Batch 1 Batch 2 



Application : data exploration 

!  Heatmap and clustering - 4 RNA-seq libraries from MITF project 
!  On SERE coefficients calculated between all pairs of libraries 
!  Clustering calculated with UPGMA 
!  Performed using R software 
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Search for  
significantly differentially expressed genes 

!  What is significant differential expression ? 
!  The observed difference between conditions is statistically significant 

 i.e. greater than expected just due to random variation 

!  Microarray vs RNA-seq 
!  Microarray  

 Fluorescence proportional to expression è continuous data 
!  RNA-seq 

 Number of reads assigned to a feature (gene, transcript) proportional 
to expression è count data 

!  Here we focus on count-based measures of gene expression 



Search for  
significantly differentially expressed genes 

! Use only a fold-change ranking ? 
!  Do not take variability into account 
!  Do not take level of expression into account 
!  No control of the false positive rate 

! Hypothesis testing 
!  For each gene 

!  H0 : No gene expression difference between the compared conditions 
!  H1 : There is a gene expression difference between the compared conditions 

!  Steps 
!  Choose a statistic 
!  Define a decision rule 

!  Define a threshold below which we will reject H0 
 



Statistic to search for  
significantly differentially expressed genes 

!  Sequencing a library = randomly and independently choose N 
sequences from the library 
 à read counts = multinomial distribution 

!  High number of reads, probability of a read assigned to a given 
gene small à Poisson approximation 
!  Distribution of counts across technical replicates for the majority of 

genes fit well to a Poisson distribution  
     Marioni et al. Genome Research 2008;18(9):1509-17 
     Bullard et al. BMC Bioinformatics 2010;11,94 

 
!  But Poisson distribution : variance = mean 

 è Across biological replicates variance > mean for many genes  
 (Anders et al. Genome Biology 2010;11:R106) : overdispersion 
 è Negative binomial distribution : a good alternative to Poisson in 
the case of overdispersion 



Negative binomial models 

!  How to estimate the overdispersion parameter ? 
!  Very few replicates è challenging issue 
!  A common dispersion for all genes (Robinson et al. Biostatistics 2008;9(2):321-32)  
è rarely appropriate assumption 
!  edgeR (Robinson et al. Bioinformatics. 2010;26(1):139-40) 
   DESeq (Anders et al. Genome Biology 2010;11:R106) 
   DESeq2 (Anders et al. Genome Biol. 2014;15(12):550) 

 Allow the different genes to have different dispersion parameters but 
improve the estimation of these parameters by borrowing information 
across genes 

!  Generalized linear models : edgeR, DESeq2 
!  Generalization of a linear model that allows response variables to have 

other than normal distribution, e.g. negative binomial 
!  Allow to analyse multifactor designs 

  



Definition of a decision rule 

!  p-value 
!  Probability of obtaining a statistic at least as extreme as the 

one that was actually observed, assuming that H0 is true 
 

! Reject H0 if p-value < threshold 
!  Common threshold = 0.05 
è  the observed result would be highly unlikely under H0 
But be careful : you perform multiple testing ! 



Multiple testing problem 

!  To identify significantly differentially expressed genes 
 è as many tests as the number of genes (G) 

!  With a type I error α for each gene 
!  we expect to find Gα false positives 
!  i.e. Gα genes declared to be differentially expressed even though 

there are not 
!  e.g. G=30,000 genes α=0.05  
    è We expect to find 1,500 false positives 
è Important to control the false positive rate when we make a lot of tests 

!  2 points of views 
!  Individually consider the differentially expressed genes sorted 

according to a statistic 
!  Consider a list of differentially expressed genes, in which we would 

like to control the false positive rate 
   è Use a multiple testing correction 
 

 



Multiple testing correction methods 

!  Control the Family-Wise Error Rate (FWER) 
!  Definition 

!  FWER : Probability to have at least one false positive 
!  e.g. FWER = 0.05 è 5% chances of having at least one false positive 

!  Methods to control the FWER 
!  Bonferroni 

 pg_adjusted = min (Gpg, 1) 
 è Each test is performed with a type I error α/G 

!  Westfall et Young (1993) 
!  Very conservative methods (Ge et al. TEST 2003;12(1):1-77) 



Multiple testing correction methods 

!  Control the False Discovery Rate (FDR) 
!  Definition 

!  Expected proportion of false positives among genes declared as 
differentially expressed 

!  e.g. FDR = 0.05 è We expect to find 5% of false positives among genes 
declared as significantly differentially expressed 

!  Methods to control the FDR 
!  Benjamini and Hochberg (Journal of the R. Stat. Soc., Series B 57 (1): 125–133) 

!  Hypothesis : independence the of tests performed 
!  Benjamini and Yekutieli (Ann Stat 2001; 29:1165-1188)  

!  Hypothesis : dependency of the tests performed  
            (e.g. due to genes co-regulations) 

!  Very conservative method (Ge et al. TEST 2003;12(1):1-77) 

 
à Less stringent than controlling the FWER 



Application :  
Statistical analysis results 
!  Test to search for significantly differentially expressed genes 

performed using R and DESeq2 Bioconductor package 
available in  

     http://bioconductor.org/packages/release/bioc/html/DESeq2.html  
!  Adjustment for multiple testing performed using the Benjamini 

and Hochberg method 
!  Annotations performed with the biomaRt Bioconductor package 

available in  
     http://bioconductor.org/packages/release/bioc/html/biomaRt.html 



Application :  
Statistical analysis results 
!  Scatter plot 

Significantly differentially expressed genes 
742 over-expressed genes  
(siMitf > siLuc) 
272 under-expressed genes  
(siMitf < siLuc) 



Application :  
Statistical analysis results 
!  MA-plot 



Analysis of RNA-seq data 

Functional enrichment analysis, pathway 
analysis, integration with other data, … 



Functional analysis 

!  A lot of functional analysis tools available 
!  Initially developed for microarray data 
!  e.g. GO tools listed in  

http://omictools.com/gene-ontologies-c25-p1.html 
!  Methods specific to RNA-seq data  

!  goseq (Young et al., Genome Biology 2010;11:R14) 

!  SeqGSEA (Wang et al. BMC Bioinformatics 2013, 14(Sup5):S16) 

!  GSAASeqSP (Xiong et al Scientific Reports 2014; 4:6347) 

!  DAVID will be used for this practical session because 
!  Graphical interface & free software 

!  DAVID 
!  Database for Annotation, Visualization and Integrated Discovery 
!  http://david.abcc.ncifcrf.gov/ 
!  A very interested article describing how to use DAVID :  
    Huang et al. Nature Protocols 2009;4(1):44-57. 



DAVID 

Different tools 
!  Functional Annotation Clustering  

!  Cluster functionally similar terms associated with a 
gene list into groups  

!  Functional Annotation Chart 
!  Identify enriched annotation terms associated with a 

gene list  
!  Functional Annotation Table 

!  Query associated annotations for all genes from a list 
 

Different sources of annotation 
!  Disease (OMIM) 
!  Gene Ontology 
!  Pathways (KEGG, Biocarta) 
!  Protein Domains (InterPro, SMART) 
!  Protein Interaction (BIND) 
!  … 



Exercise : functional analysis 

!  Use DAVID to perform functional analysis of genes significantly 
over-expressed in siMitf vs control samples 
!  Proposed thresholds to select significantly differentially expressed 

genes : Adjusted p-value < 0.05 and log2FoldChange > 1 
!  Go to http://david.abcc.ncifcrf.gov 
!  Click on Start Analysis 



Exercise : functional analysis 

! Excel 
!  Select the 2 columns containing log2FC and Adjusted-pvalue 
!  Données -> Filtrer 
!  Click on the filter icon 
!  Filtres numériques : 



Exercise : functional analysis 

!  Enter your gene list !  Select species  



Exercise : functional analysis 

1.  What are the 5 most enriched functional annotation terms 
among annotations of the genes from your list ?  
 How many genes are annotated with each of these terms ?  
 What are the genes annotated with the most enriched term ? 

2.  As you see redundancy in previous results, it could be 
interesting to cluster functionally similar terms into groups.  
 Perform this clustering.  
 What is the first identified cluster ? Visualize members of    
 this cluster (genes and annotation terms) by clicking on 

3.  claudin 15 gene is a member of this cluster.  
 What are all associated annotations for this gene ?  
 Among these annotations you will find the KEGG pathway 
 “Cell adhesion molecules”.  
 Are other genes from your list member of this pathway ? 


