Céline Keime keime@igbmc.fr

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

Conventional vs second generation sequencing

What is base 1? What is base 2? What is base 3?

Three main technologies

- SOLiD DNA Sequencer Applied Biosystems
 - Shendure et al., 2005
- Genome Sequencer FLX+ Roche (formerly 454)
 - Margulies et al., 2005
- Illumina (formerly Solexa)
 - Fedurco et al., 2006
- ➔ Important decrease of
 - Cost per base
 - Time needed to obtain sequences

Shendure et al., Nature Biotechnology 2008

http://www.genome.gov/sequencingcosts/

Human genome with 30X coverage for Illumina sequencing More information on how these costs are calculated : https://www.genome.gov/sequencingcostsdata/

Increase of data volume

Total bares https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

Fixation of DNA fragments on a solid support

Fixation of DNA fragments on a solid support

Patterned Flow Cell : billions of ordered wells

→ More reads
→ Faster run time

iSeq100, NextSeq1000/2000, Hiseq3000/4000/X, NovaSeq6000/X sequencers

https://www.illumina.com

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

Sequencing by synthesis

https://www.illumina.com

Sequencing by synthesis

As many sequencing cycles as the number of bases needed in the resulting read

eg cluster 1 = TAAGT... → 1 read

Each lane (top and bottom) is divided into swaths composed of tiles \rightarrow 1 image per tile per color, for each cycle

2-channel sequencing by synthesis

- Evolution of the original 4-channel SBS technology
 - 2 fluorescent dyes
 - Only 2 images per cycle instead of 4
 - Accelerates sequencing and data processing times
- Clusters seen in red images \rightarrow C
- Clusters seen in green images \rightarrow T
- Clusters observed in both red and green images → A
- I Unlabelled clusters \rightarrow G

4-Channel Chemistry				2-Channel Chemistry					
	A	G	ļ	c		A	G	Ţ	C
Image 1	٠				Image 1	•		•	
Image 2									
Image 3			٠		Image 2	•			•
Image 4				•	Result				
Result	Α	G	Т	C		Α	G	т	С

- → Sequence the other end of the original molecule
- → Step performed on the flow cell in the sequencer : keep the position of clusters This information allows to link pairs of sequences

Multiplexing

Add a barcode (index) specific to each sample

- Sequencing of several samples together
- Single indexing : 1 barcode
- Dual indexing : 2 barcodes
 - Unique dual indexes : distinct index sequences for each of the two indexes

Rd1 SP

DNA Insert

Index

P7

Rd2 SP

Non-Redundant Indexing

Adapter

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

Illumina throughput over time

Capacity to sequence a 30X human genome annually https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf

Illumina sequencers

	iSeq 100	MiniSeq	MiSeq Series O	NextSeq 550 Series	
Run Time	9.5-19 115	4-24 hours	4-55 hours	12-30 hours	
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb	
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million	
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp	
	Nex	ctSeq 1000 & 2000	NovaSeq 6000 Series 🗘	NovaSeq X Series	
Run Time		11-48 hours	~13–38 hours (dual SP flow cells) ~13–25 hours (dual S1 flow cells) ~16–36 hours (dual S2 flow cells) ~44 hours (dual S4 flow cells)	~13–21 hours (1.5B flow cells [‡]) ~18–24 hours (10B flow cells [‡]) ~48 hours (25B flow cells [‡])	
Maximum Output		360 Gb *	6000 Gb	16 Tb	
Maximum Reads Per Run		1.2 billion *	20 billion	26 billion (single flow cells) 52 billion (dual flow cells)	
Maximum Read Length		2 × 150 bp	2 × 250 bp**	2 × 150 bp	

From https://emea.illumina.com/systems/sequencing-platforms.html

Illumina NextSeq2000

■ 3 types of flow cell

Flow cells [*] name	Maximum number of clusters/flow cells#	Read length options (in bp)			pp)		
P1	100 M				300		
P2	400 M		100	200	300		
P3	1000 M	50	100	200	300		
* Each type of flow cell can be used indiscriminately for single read (SR) or paired-end (PE) sequencing : e.g. a 100 bp kit can be used as SR100, PE50, PE25x75							
# 100 M clusters = 100 M reads in SR and 2x100 M in PE sequencing							

- Introduction to second generation sequencing
- Library preparation
- Amplification
- Sequencing
- Illumina sequencers and throughput
- Other technologies

Other technologies

Short reads

- up to 300 bases
- Genome resequencing, expression and epigenetic analysis
- MGI, Ultima Genomics, Pacific Biosciences, Element Biosciences, …

Long reads

- ~ several kb
- De novo sequencing, structural variation analysis, isoform sequencing
- Oxford Nanopore Technologies, Pacific Biosciences
- Longer reads, no amplification, direct RNA sequencing, but lower throughput