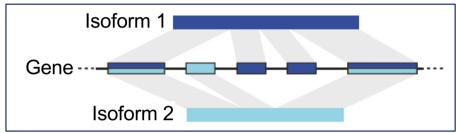

Analysis of RNA-seq data

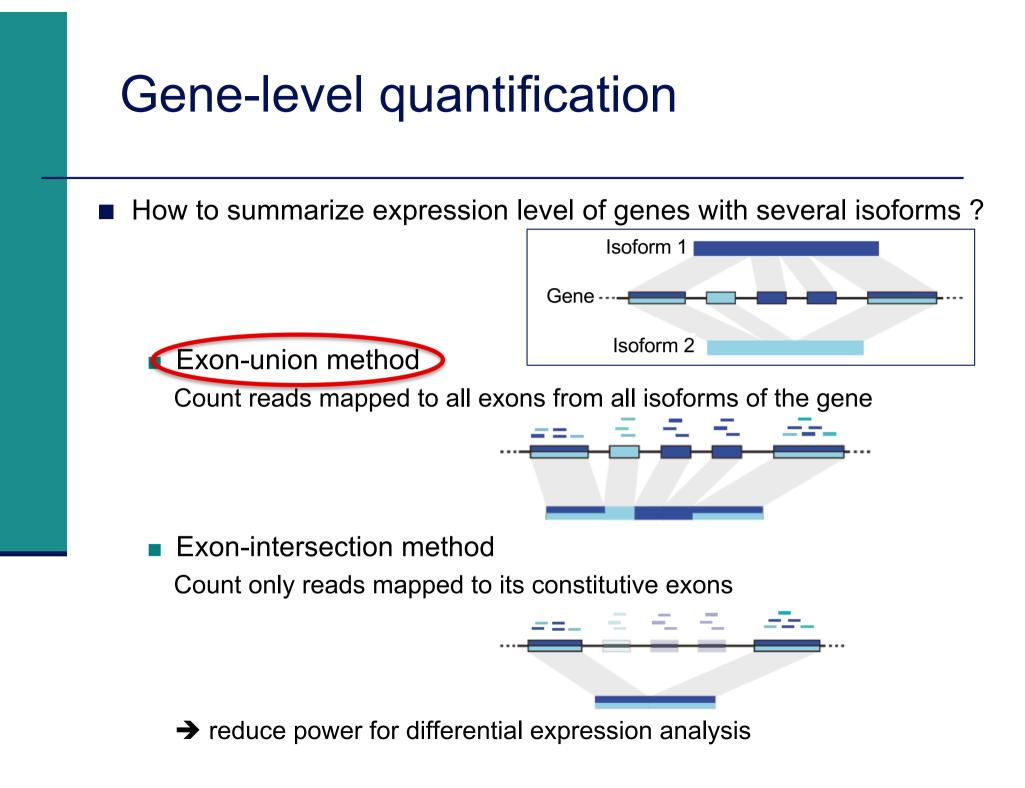
Céline Keime keime@igbmc.fr



Gene-level quantification

How to summarize expression level of genes with several isoforms ?

Exon-union method


Garber et al., Nature methods 2011; 8(6):469-77

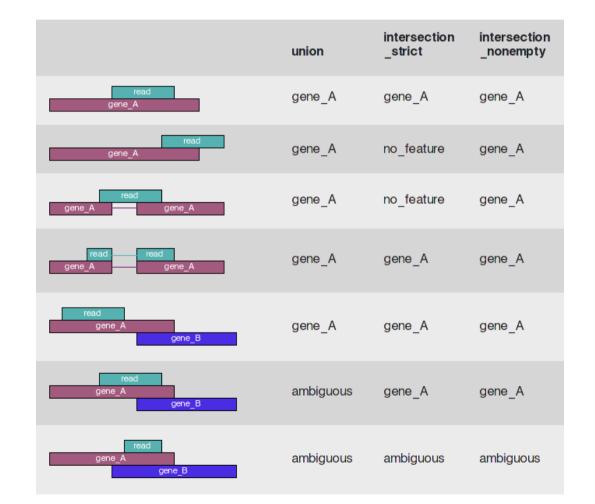
Count reads mapped to all exons from all isoforms of the gene

Exon-intersection method

Count only reads mapped to its constitutive exons

 \rightarrow reduce power for differential expression analysis

Gene-level quantification :


HTSeq-count Anders et al., Bioinformatics 2015;31(2):166-9

How to deal with multiple aligned reads ?

- Multi-mapped reads are discarded rather than counted for each feature
 - Because the primary intended use case for htseq-count is differential expression analysis
 - i.e. comparison of the expression of the same gene across samples
- Why?
 - Consider 2 genes with multiple aligned reads on these genes
 - Discard multiple aligned reads
 - \rightarrow undercount the total output of these 2 genes
 - But the expression ratio between conditions will still be correct
 - Because we discard the same fraction of reads in all samples
 - If we counted these reads for both genes
 - \bullet \rightarrow differential expression analysis might find false positives
 - Even if only one of the gene is differentially expressed
 - Multi-mapped reads would be counted for both genes
 - Gives the wrong appearance that both genes are differentially expressed

Gene-level quantification : HTSeq-count

How to deal with overlapping features ?

https://htseq.readthedocs.io/en/latest/count.html

HTSeq-count

Input

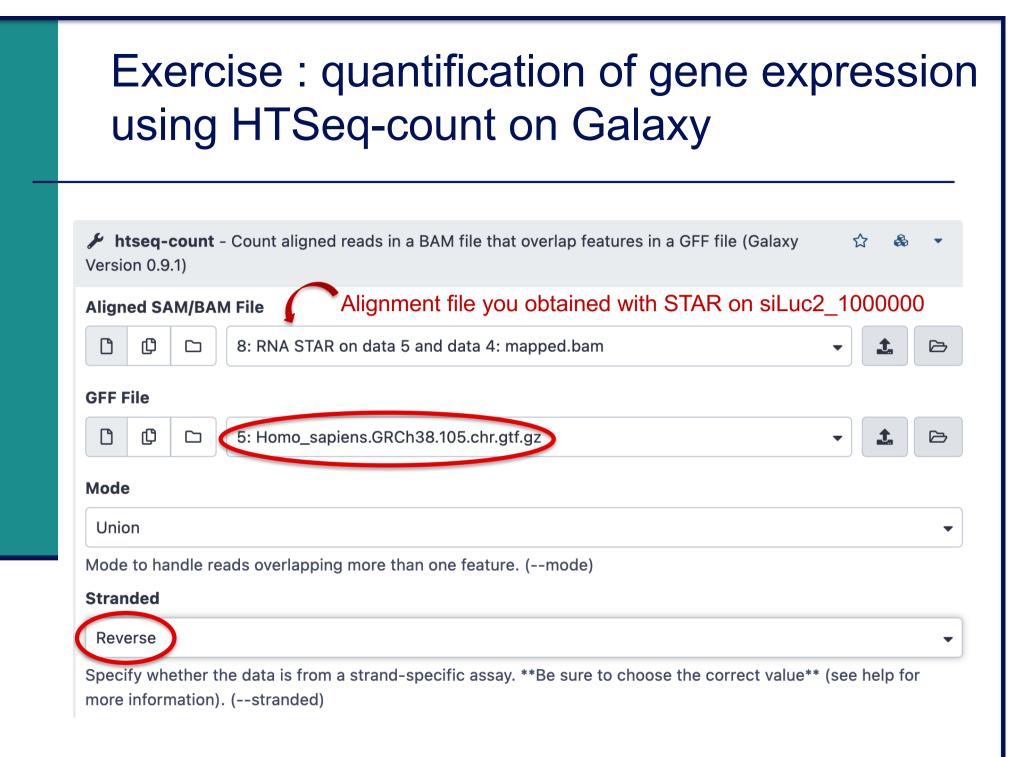
- Alignment file (SAM/BAM)
- Annotation file (GFF/GTF) with the same chromosome names as in the alignment file

Options

^{Mode} − cf. previous slide	
Union	Reverse for a directional protoco
Mode to handle reads overlapping more than one feature. (mode)	that generates reads in the
Stranded	
Yes	opposite strand as the
Specify whether the data is from a strand-specific assay. **Be sure to choose the correct value** (see help for more information). (stranded)	transcribed one
Minimum alignment quality	No for a non-directional protocol
10	-
Skip all reads with alignment quality lower than the given minimum value. (minaqual)	
Feature type	-
exon	
Feature type (3rd column in GFF file) to be used. All features of other types are ignored. The default, suitable for RNA Ensembl GTF files, is exon. (type)	A-Seq and OK for
ID Attribute	Ensembl
gene_id	
GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the s feature. The feature ID is used to identity the counts in the output table. All features of the specified type MUST have for this attribute. The default, suitable for RNA-Seg and Ensembl GTF files, is gene_id. (idattr)	

Ensembl GTF file

Feature type : Feature type (3rd column in GFF file) to be used. All features of other types are ignored. The default, suitable for RNA-Seq and Ensembl GTF files, is exon.
 3rd column


Seqid	Source	Туре	Start	End	Score	Strand	Phase	Attributes
2	oncombl hour		222012042	222012564				
2	ensembl_hava	ana gene	227813842	227817564	•	+	•	
2	havana	transcript	227813842	227817564		+		
2	havana	exon	227813842	227813987		+		
2	havana	CDS	227813912	227813987		+	0	
Z	havana	start_codon	227813912	227813914		+	0	
2	havana	exon	227815457	227815568		+		i
2	havana	CDS	227815457	227815568		+	2	<u> </u>

→ ID Attribute : GFF attribute to be used as feature ID. Several GFF lines with the same feature ID will be considered as parts of the same feature. The feature ID is used to identity the counts in the output table. All features of the specified type MUST have a value for this attribute. The default, suitable for RNA-Seq and Ensembl GTF files, is gene_id.

gene_id "ENSG00000115009"; gene_version "11"; transcript_id "ENST00000409189"; transcript_version "7"; exon_number "1"; gene_name "CCL20"; gene_source "ensembl_havana"; gene_biotype "protein_coding"; havana_gene "OTTHUMG00000133189"; havana_gene_version "3"; transcript_name "CCL20-001"; transcript_source "havana"; transcript_biotype "protein_coding"; ...

Exercise : quantification of gene expression using HTSeq-count on Galaxy

- Launch HTSeq-count to quantify gene expression on siLuc2_1000000 sample
- Inputs
 - Alignment file you obtained with STAR on siLuc2_1000000.fastq.gz
 - Annotations : Ensembl release 105 GTF file : Homo_sapiens.GRCh38.105.chr.gtf.gz (already imported)

HTSeq-count on Galaxy

Output

16: htse a 5 and ure)

15: htse a 5 and A tabulated text file providing

	Category	RNA STAR on data 5 and data 4: map	ped.bam
/	no_feature	the number of reads not	67657
eq-count on dat 🛛 💿 🖋 🗴 d data 8 (no feat	ambiguous	Sassigned to genes	32425
	too_low_aQual	1	0
eq-count on dat 💿 🖉 >	not_aligned	the number of alignments not taken into account	13608
d data 8	alignment_not_unique		450475

A tabulated text file containing the number of reads assigned to each gene

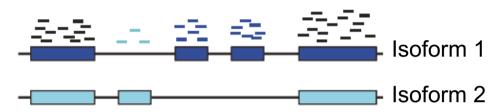
Geneid	RNA STAR on data 5 and data 4: mapped.bam
ENSG0000000003	31
ENSG0000000005	0
ENSG0000000419	95
ENSG0000000457	18
ENSG0000000460	55
ENSG0000000938	0
ENSG0000000971	3
ENSG0000001036	66

HTSeq-count

Results on siLuc2_1000000

- 1. Among uniquely mapped reads, what is the proportion of assigned, no feature and ambiguous reads ?
- → What is the number of uniquely mapped reads ?
- What is the number of no feature reads ? Calculate the corresponding proportion
- What is the number of ambiguous reads ? Calculate the corresponding proportion
- Calculate the proportion of assigned reads

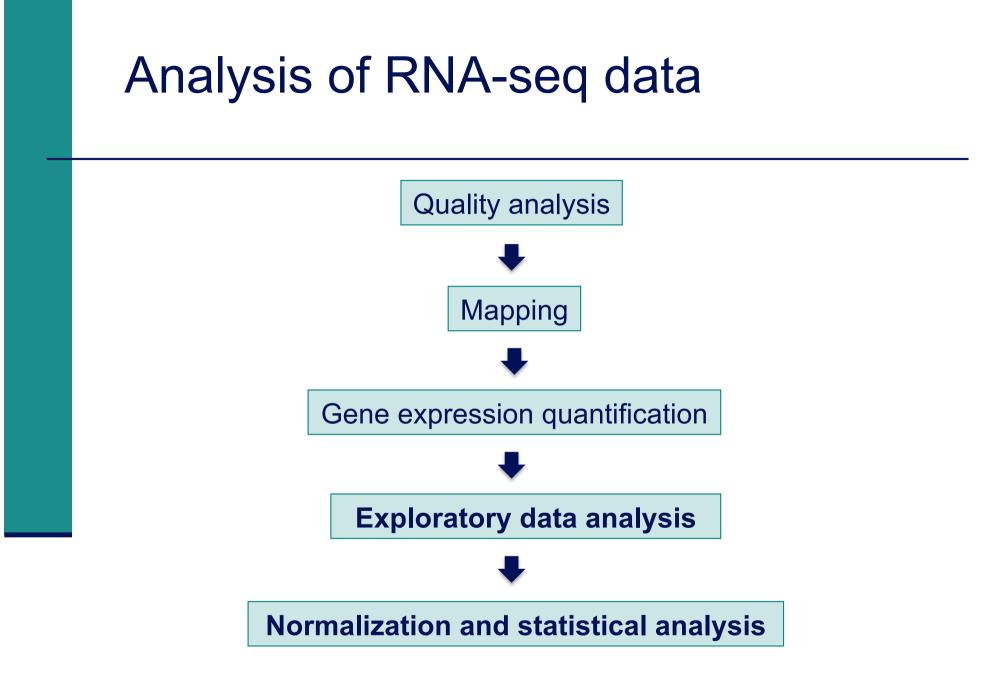
HTSeq-count


Results on whole dataset

- Gene quantification results on the whole dataset are available in "NGS data analysis training Strasbourg" history
- Summary of quantification results

Sample name	% of assigned reads	% of no feature reads	% of ambiguous reads
siLuc2	88.22	7.95	3.83
siLuc3	87.61	8.62	3.77
siMitf3	88.91	7.43	3.65
siMitf4	89.32	6.98	3.70

Transcript-level quantification


Some reads cannot be assigned unequivocally to a transcript

Alexa-seq (Griffith et al. Nature methods 2010)

Counts only reads that map uniquely to a single isoform \rightarrow Fails for genes that do not contain unique exons from which to estimate isoform expression

- Cufflinks (Trapnell et al. Nature Biotechnology 2010); MISO (Katz et al. Nature Methods 2010); RSEM (Li et al. BMC Bioinformatics 2011)
 - Construct a likelihood function that models the sequencing process
 - Calculate isoforms abundance estimates that best explain the reads observed in the experiment
- Alignment-free methods
 - Salmon (Patro et al. Nature methods 2017); kallisto (Bray et al. Nature Biotechnology 2016)
 - Search which transcript has generated the read
 - Where the read aligns is not necessary
 - Ultra-fast methods

→ Launch exploratory data analysis, normalization and statistical analysis on Galaxy

Exercise : SARTools

SARTools

- R package dedicated to differential analysis of RNA-seq data
- Allows to
 - Generate descriptive and diagnostic graphs
 - Run differential analysis with DESeq2 or edgeR package
 - Export the results into tab-delimited files
 - Generate a report
- Does not replace DESeq2 or edgeR but simply provides an environment to use some of their functionalities
- > We will use SARTools with DESeq2

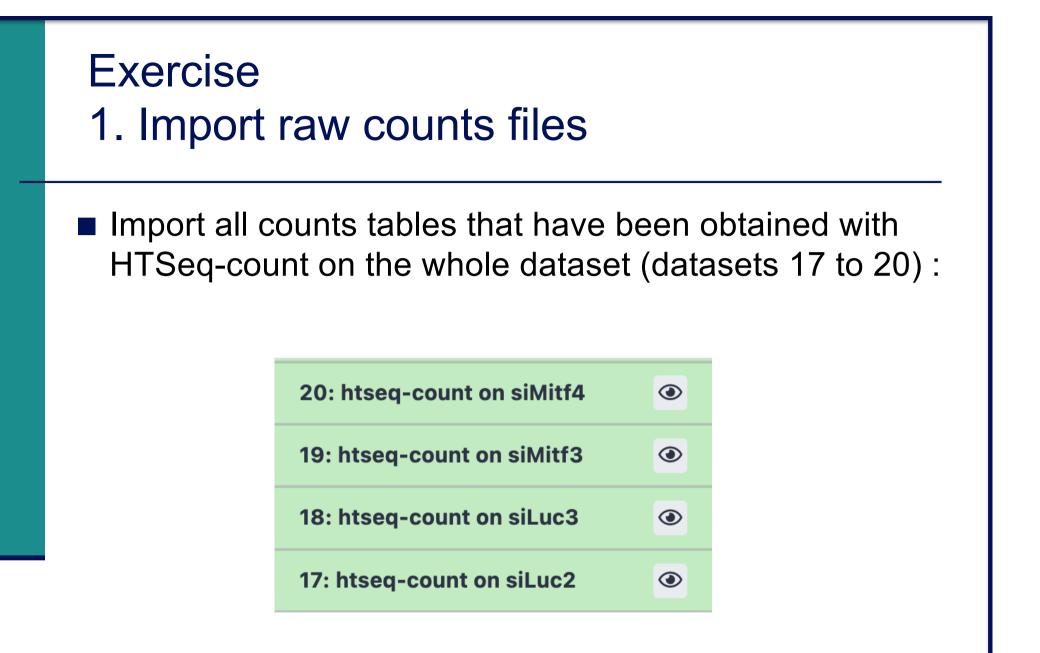
Exercise : SARTools

Input files for SARTools

- A zip file containing raw counts files
- A design file describing the experiment

label	files	group
slc1	<pre>count_file_sample1_cond1.txt</pre>	cond1
s2c1	<pre>count_file_sample2_cond1.txt</pre>	cond1
s1c2	<pre>count_file_sample1_cond2.txt</pre>	cond2
s2c2	<pre>count_file_sample2_cond2.txt</pre>	cond2

Design file for the analysis we would like to perform :


label	files	group
siLuc2	<pre>siLuc2_htseq.txt</pre>	siLuc
siLuc3	<pre>siLuc3_htseq.txt</pre>	siLuc
siMitf3	<pre>siMitf3_htseq.txt</pre>	siMitf
siMitf4	<pre>siMitf4_htseq.txt</pre>	<u>siMitf</u>

These files can be prepared using the tool "Preprocess files for SARTools"

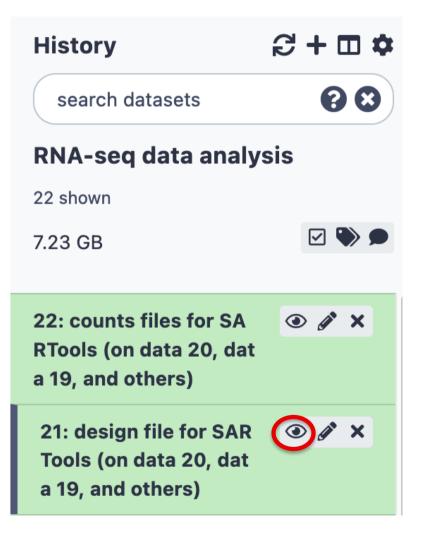
Exercise : SARTools

Launch statistical analysis using SARTools DESeq2

- 1. Import raw count files obtained on the whole dataset
 - 17 : htseq-count on siLuc2
 - 18 : htseq-count on siLuc3
 - 19 : htseq-count on siMitf3
 - 20 : htseq-count on siMitf4
- 2. Prepare files for SARTools using **Preprocess files** for SARTools
- 3. Launch **SARTools DESeq2**

Exercise 2. Prepare files for SARTools

Use the tool Preprocess files for SARTools


Tools ☆ ≔	Preprocess files for SARTools generate design/target file and	History	C + 🗉 🕈
sartools	archive for SARTools inputs (Galaxy Version 0.1.1)	search datasets	88
1. Upload Data	Add a blocking factor No	RNA-seq data analys	sis
Show Sections	Adjustment variable to use as a batch effect (default no). Group	7.23 GB	
Preprocess files for SARTools generate design/target file and archive for SARTools inputs	1: Group Group name	20: htseq-count on siM itf4	• / ×
SARTools edgeR Compare two or more biological conditions in a RNA-Seq framework with edgeR	siLuc Raw counts	19: htseq-count on siM itf3	• / ×
SARTools DESeq2 Compare two or more biological conditions in a RNA- Seq framework with DESeq2	1: Raw counts	18: htseq-count on siL uc3	• / ×
WORKFLOWS	C C 17: htseq-count on siLuc2	17: htseq-count on siL uc2	④ ♂ ×
All workflows	Replicate label name siLuc2	16: htseq-count on dat a 5 and data 8 (no feat ure)	● / ×
	You need to specify an unique label name for your replicates.	15: htseq-count on dat a 5 and data 8	● / ×
	Replicate raw count	14: Infer Experiment on data 9 and data 12	
	□ □ 18: htseq-count on siLuc3 ✓ ▲ ► Replicate label name	13: Infer Experiment on data 9 and data 10	● / ×
	siLuc3 Four need to specify an unique label name for your replicates.	12: RNA STAR on siLuc 2_other_protocol: map ped.bam	④ ♂ ×

Exercise 2. Prepare files for SARTools

Group	
roup name	
siMitf	
aw counts	
1: Raw coun	ts
Replicate ra	aw count
C C	□ 19: htseq-count on siMitf3 - 12 ▷
Replicate la	abel name
siMitf3	
	specify an unique label name for your replicates.
2: Raw cour	ts
Replicate ra	aw count
00	□ 20: htseq-count on siMitf4 - 1 □
Replicate la	abel name
siMitf4	
You need to	specify an unique label name for your replicates.
+ Insert Ra	w counts

Exercise 2. Prepare files for SARTools : results

label	files	group
siLuc2	dataset_2432739.dat	siLuc
siLuc3	dataset_2432741.dat	siLuc
siMitf3	dataset_2432743.dat	siMitf
siMitf4	dataset_2432745.dat	siMitf

Exercise 3. Launch SARTools DESeq2

SARTools DESeq2 Compare two or more biological conditions in a RNA-Seq framework with DESeq2 (Galaxy Version 1.7.3+galaxy0)	1	2 &	•
Name of the project used for the report			
Analysis_siMitf_siLuc without space			
No space allowed. (projectName)			
Name of the report author			
Galaxy			
No space allowed. (author)			
Design / target file			
C 21: design file for SARTools (on data 20, data 19, and others)	•	£	B
See the help section below for details on the required format. (targetFile)			
Zip file containing raw counts files			
C 22: counts files for SARTools (on data 20, data 19, and others)	•	£	Ø
See the help section below for details on the required format. (rawDir)			
Names of the features to be removed			
alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual			
Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are 'alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual'. (featuresToRemove)			
Factor of interest			
group			
Biological condition in the target file. Default is 'group'. (varInt)			
Reference biological condition			
siLuc			

Figures

Galaxy Tool SARTools_DESeq2

Run at 14/04/2023 14:28:59

Figures available for downloading

Output File Name (click to view)	Size
MAPlot.png	1.0 MB
PCA.png	112.7 KB
<u>barplotNull.png</u>	61.5 KB
<u>barplotTotal.png</u>	60.9 KB
cluster.png	37.4 KB
countsBoxplots.png	95.5 KB
densplot.png	143.8 KB
diagSizeFactorsHist.png	125.1 KB
diagSizeFactorsTC.png	99.9 KB
dispersionsPlot.png	354.4 KB
majSeq.png	91.7 KB
pairwiseScatter.png	249.5 KB
<u>rawpHist.png</u>	44.7 KB
volcanoPlot.png	182.8 KB

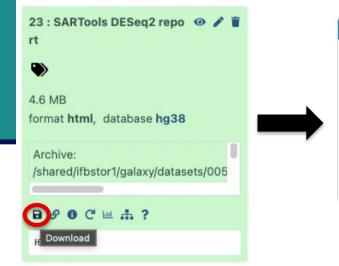
History	ŀ	≓	•
search datasets		¥	×
RNA-seq data analy	sis	;	/
2 7.8 GB		Q 23	7
■ 43			4
27 : SARTools DESeq2 R obj ects (.RData)	0	1	•
26 : SARTools DESeq2 R lo g	0	1	
25 : SARTools DESeq2 figur es	0		T
24 : SARTools DESeq2 tabl es	0	1	•
23 : SARTools DESeq2 repo rt	0	1	T
22 : counts files for SARToo Is (on data 20, data 19, and others)	0	1	
21 : design file for SARTool s (on data 20, data 19, and others)	0	1	T

a ×

Tables

Galaxy Tool SARTools_DESeq2

Run at 14/04/2023 14:28:59


Tables available for downloading

Output File Name (click to view)	Size	
siMitfvssiLuc.complete.txt	6.1 MB	→ All genes
siMitfvssiLuc.down.txt	521.9 KB	Only significant down-regulated genes
siMitfvssiLuc.up.txt	587.0 KB	 (i.e. less expressed in siMitf than in siLuc)
		Only significant up-regulated genes

(i.e. more expressed in siMitf than in siLuc)

Report

- Provides details about the methodology, the different steps and results
- Displays all figures produced + a summary of differential analysis results

1 Introduction

2 Description of raw data
3 Variability within the experiment: data exploration
4 Normalization
5 Differential analysis
6 R session information and parameters
Bibliography

Statistical report of project Analysis_siMitf_siLuc: pairwise comparison(s) of conditions with DESeq2

Galaxy

2023-04-14

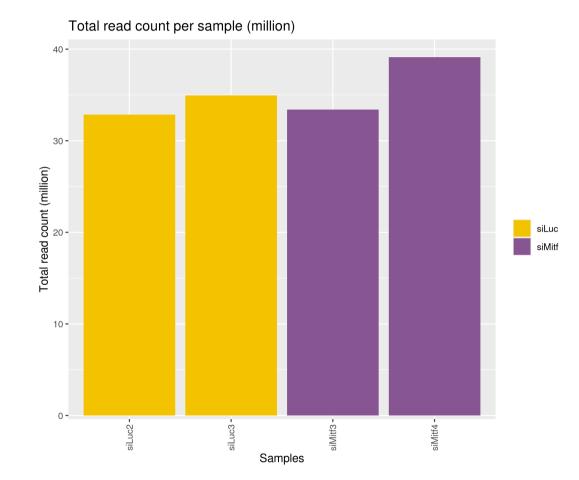
The SARTools R package which generated this report has been developped at PF2 - Institut Pasteur by M.-A. Dillies and H. Varet (hugo.varet@pasteur.fr). Thanks to cite H. Varet, L. Brillet-Guéguen, J.-Y. Coppee and M.-A. Dillies, SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data, PLoS One, 2016, doi: http://dx.doi.org /10.1371/journal.pone.0157022 when using this tool for any analysis published.

Report

Description of raw data

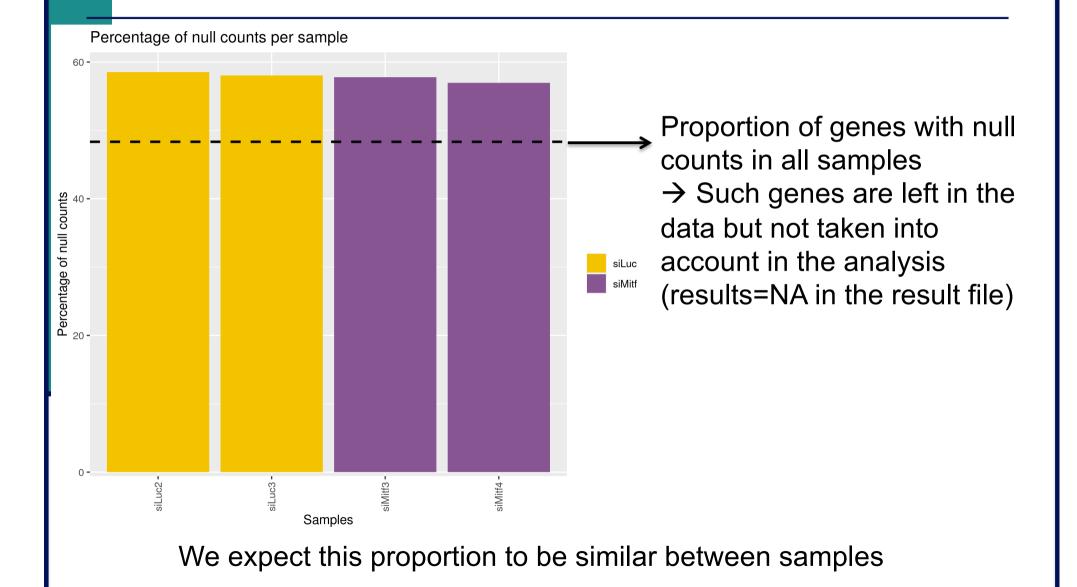
Table 1: Data files and associated biological conditions.

label	files	group
siLuc2	dataset_2432739.dat	siLuc
siLuc3	dataset_2432741.dat	siLuc
siMitf3	dataset_2432743.dat	siMitf
siMitf4	dataset_2432745.dat	siMitf

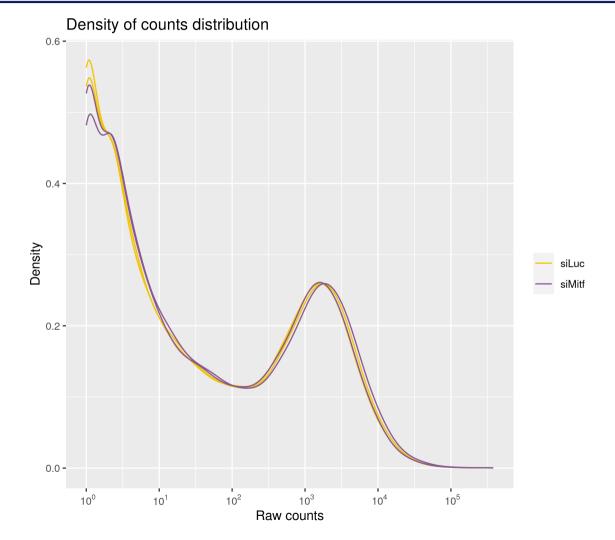

For this project, there are 61487 features in the count data table. Table 2: Partial view of the count data table.

	siLuc2	siLuc3	siMitf3	siMitf4
ENSG0000000003	1271	1358	1282	1366
ENSG0000000005	0	0	0	0
ENSG0000000419	3700	3960	3760	3910
ENSG0000000457	655	647	636	755
ENSG0000000460	2442	2764	1449	1731
ENSG0000000938	0	0	0	0

Table 3: Summary of the raw counts.


	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
siLuc2	0	0	0	534	13	283474
siLuc3	0	0	0	569	14	276224
siMitf3	0	0	0	543	13	335630
siMitf4	0	0	0	636	15	380273

Total read count per sample



Different between samples, as expected \rightarrow normalization needed More difficult when major differences between samples

Proportion of null counts per sample

Density distribution of read counts

We expect replicates to have similar distributions

Proportion of reads from most expressed genes

sil uc

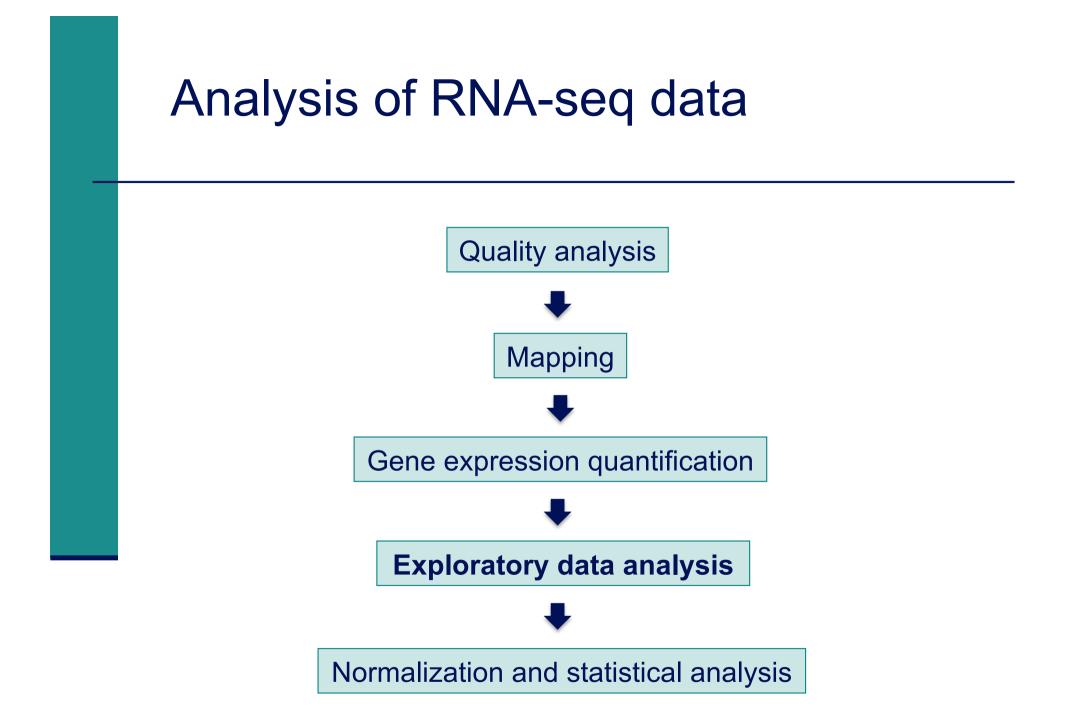
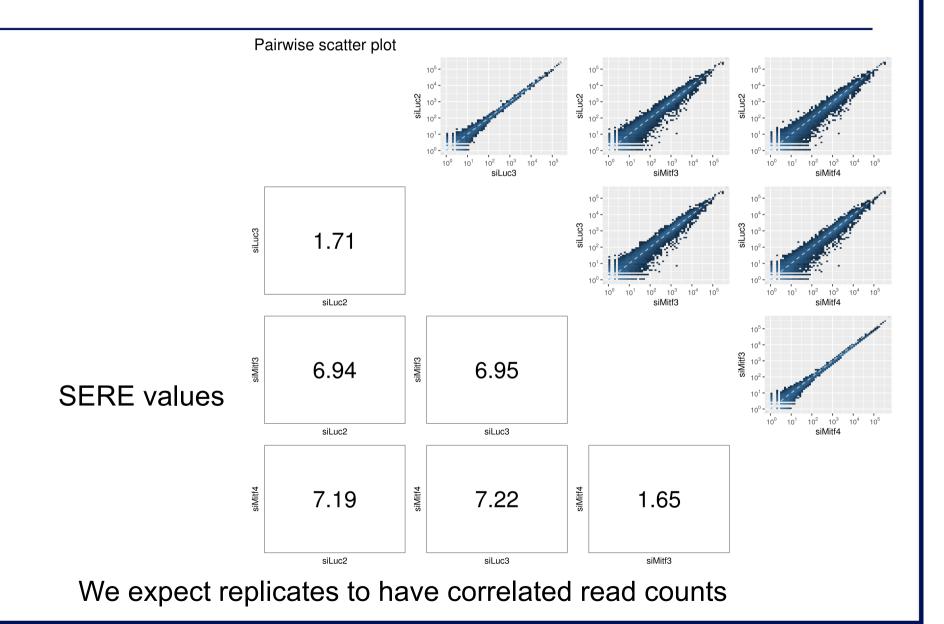



Table 4: Percentage of reads associated with the sequences having the highest counts.

	ENSG00000185664	ENSG00000198886	ENSG00000198804	ENSG00000210082	ENSG00000107165
siLuc2	0.86	0.78	0.76	0.75	0.68
siLuc3	0.79	0.72	0.71	0.71	0.62
siMitf3	0.71	0.84	0.93	0.69	1.00
siMitf4	0.73	0.91	0.91	0.69	0.97


We expect these high count features to be the same across replicates

Exploration and visualization of data

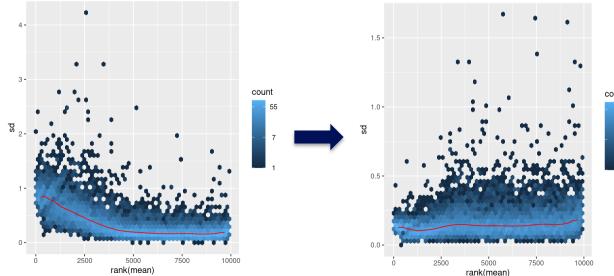
- Essential step before any analysis
- Allows data quality assessment and control
- Eventually leads to remove data with insufficient quality

Pairwise comparison of samples

SERE coefficient

Simple Error Ratio Estimate (Schulze et al. BMC Genomics 2012;13:524)

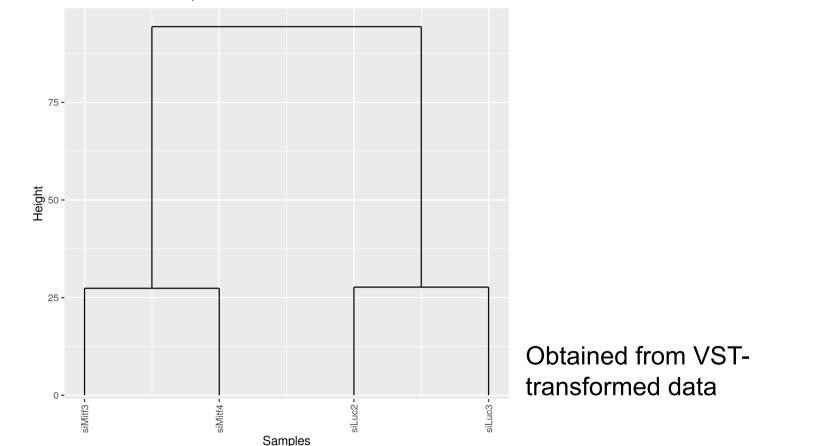
SERE = $\frac{\text{Observed standard deviation between two samples}}{\text{Value that would be expected from an ideal experiment}}$


- SERE = $0 \rightarrow$ sample duplication
- SERE = 1 → technical replication
- SERE > 1 → biological variation
- SERE ↑ → Similarity ↓

Data transformation

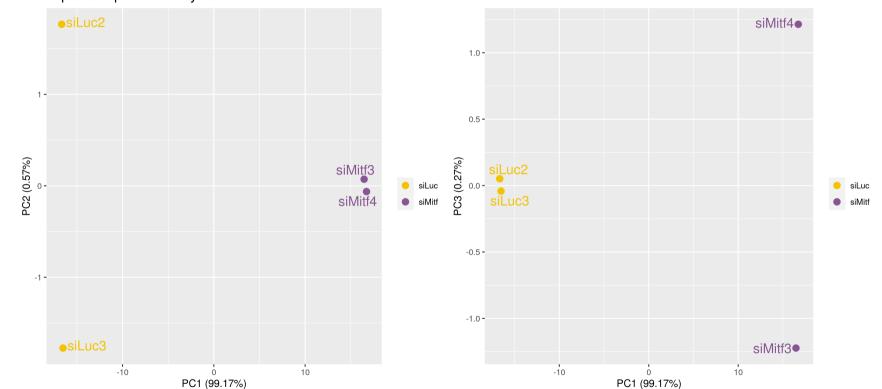
- Many methods for exploratory data analysis (clustering, PCA) work best for data that generally have the same range of variance at different ranges of mean values
- However this is not the case for RNA-seq data
- To avoid that results are dominated by a few highly variable genes
- \rightarrow Remove the dependence of the variance on the mean :

VST (variance-stabilizing transformation ; Anders et al. Genome Biology 2010, 11:106)


→ Only for exploratory data analysis !

https://bioconductor.org/packa ges/release/bioc/vignettes/DE Seq2/inst/doc/DESeq2.html

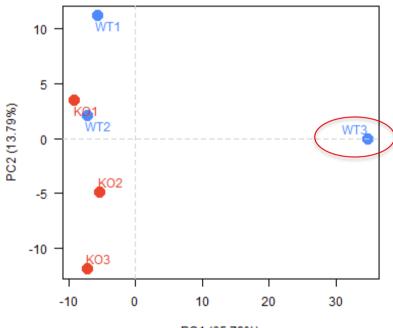
Samples clustering


Cluster dendrogram Euclidean distance, Ward criterion

We expect this dendrogram to group replicates and separate biological conditions

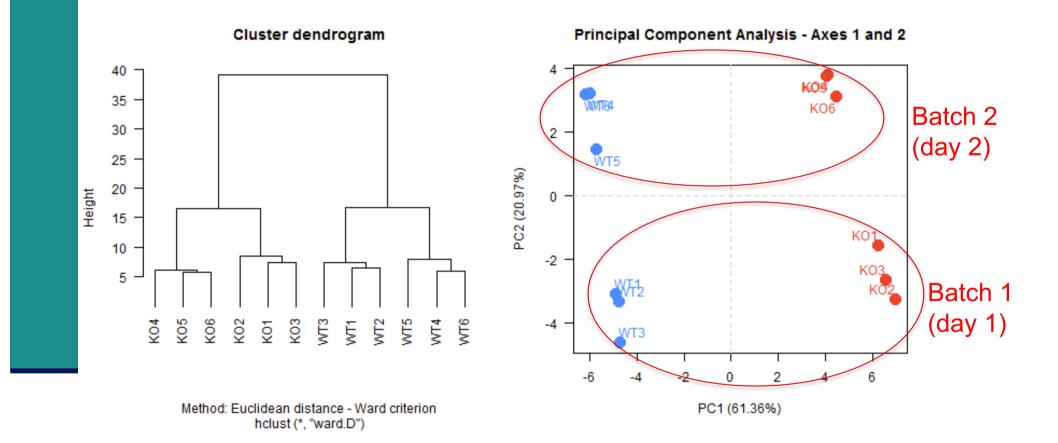
Principal Component Analysis

Obtained from VST-transformed data


Principal Component Analysis

The first principal component is expected to separate samples from the different biological conditions

(i.e. corresponds to the main source of variance in the data)


Data exploration on another dataset : outlier sample

Principal Component Analysis - Axes 1 and 2

PC1 (65.79%)

Data exploration on another dataset : batch effect

 \rightarrow Take into account this batch effect in statistical analysis

eprocess files for SARTools generate design/target file and archive for SARTools inputs (Galaxy Version 0.1.0)	- Options
dd a blocking factor	
Yes No	
nustment variable to use as a batch effect (default no).	
level	
1: level	
Group name	
WT	
Raw counts	
1: Raw counts	圃
Replicate raw count	
ℓ ℓ	•
Replicate label name	
WT1	
You need to specify an unique label name for your replicates.	
Blocking factor	
dayl	
2: Raw counts	圃
Replicate raw count	
□ 4 □ 16: htseq-count on WT2	•
Replicate label name	
WT2	
You need to specify an unique label name for your replicates.	
Blocking factor	
dayl	
3: Raw counts	匬
Replicate raw count	
17: htseq-count on WT3	•
Replicate label name	
WT3	
You need to specify an unique label name for your replicates.	
Blocking factor	
dayl	

4: Raw counts	
Replicate raw count	
[
Replicate label name	
WT4	
You need to specify an unique label name for your replicates.	
Blocking factor	
day2	
: Raw counts	
Replicate raw count	
19: htseq-count on WT5	
Replicate label name	
WT5	
You need to specify an unique label name for your replicates.	
Blocking factor	
day2	
: Raw counts	
Replicate raw count	
20: htseq-count on WT6	
Replicate label name	
WT6	
You need to specify an unique label name for your replicates.	
Blocking factor	
day2	
Insert Raw counts	

level	
iroup name	
ко	
taw counts	
1: Raw counts	匬
Replicate raw count	
□ Φ □ 21: htseq-count on KO1	•
Replicate label name	
КО1	
You need to specify an unique label name for your replicates.	
Blocking factor	
day1	
2: Raw counts	Ŵ
Replicate raw count	
1 1 22: htseq-count on KO2	•
Replicate label name	
KO2	
You need to specify an unique label name for your replicates.	
Blocking factor	
dayl	
3: Raw counts	
Replicate raw count	
1 1 23: htseq-count on KO3	•
Replicate label name	
коз	
KO3 You need to specify an unique label name for your replicates.	

4: Raw counts	圓
Replicate raw count	
1 1 24: htseq-count on KO4	•
Replicate label name	
КО4	
You need to specify an unique label name for your replicates.	
Blocking factor	
day2	
: Raw counts	圃
Replicate raw count	
C 42 C 25: htseq-count on KO5	•
Replicate label name	
КО5	
You need to specify an unique label name for your replicates.	
Blocking factor	
day2	
: Raw counts	Ш
Replicate raw count	
C 42 C 26: htseq-count on KO6	•
Replicate label name	
K06	
You need to specify an unique label name for your replicates.	
You need to specify an unique label name for your replicates. Blocking factor	

Design file :

1	2		3	4
label	files		group	batch
WT1	dataset_	dat	WT	day1
WT2	dataset_	dat	WT	day1
WT3	dataset_	dat	WT	day1
WT4	dataset_	dat	WT	day2
WT5	dataset_	dat	WT	day2
WT6	dataset_	dat	WT	day2
KO1	dataset_	dat	КО	day1
KO2	dataset_	dat	ко	day1
КОЗ	dataset_	dat	КО	day1
KO4	dataset_	dat	ко	day2
KO5	dataset_	dat	ко	day2
KO6	dataset_	dat	ко	day2

Take into account batch effect in SARTools 2. SARTools DESeq2

-

•

-

•

Name of the project used for the report

Example batch

(-P, --projectName)

Name of the report author

keime

(-A, --author)

Design / target file

27: design file for SARTools (on data 26, data 25, and others)

(-t, --targetFile) See the help section below for details on the required format.

Zip file containing raw counts files

🕒 🖓 🗀 28: counts files for SARTools (on data 26, data 25, and others)

(-r, --rawDir) See the help section below for details on the required format.

Have you a header in your count files ?

No

The tool needs no header in the input files, so if there is an header, select yes, and it removes it during the processing.

Names of the features to be removed

alignment not unique, ambiguous, no feature, not aligned, too low aQual

(-F, --featuresToRemove) Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeq-count information and rRNA for example. Default are 'alignment not unique, ambiguous, no feature, not aligned, too low aQual'.

Factor of interest

group

(-v, --varInt) Biological condition in the target file. Default is 'group'.

Reference biological condition

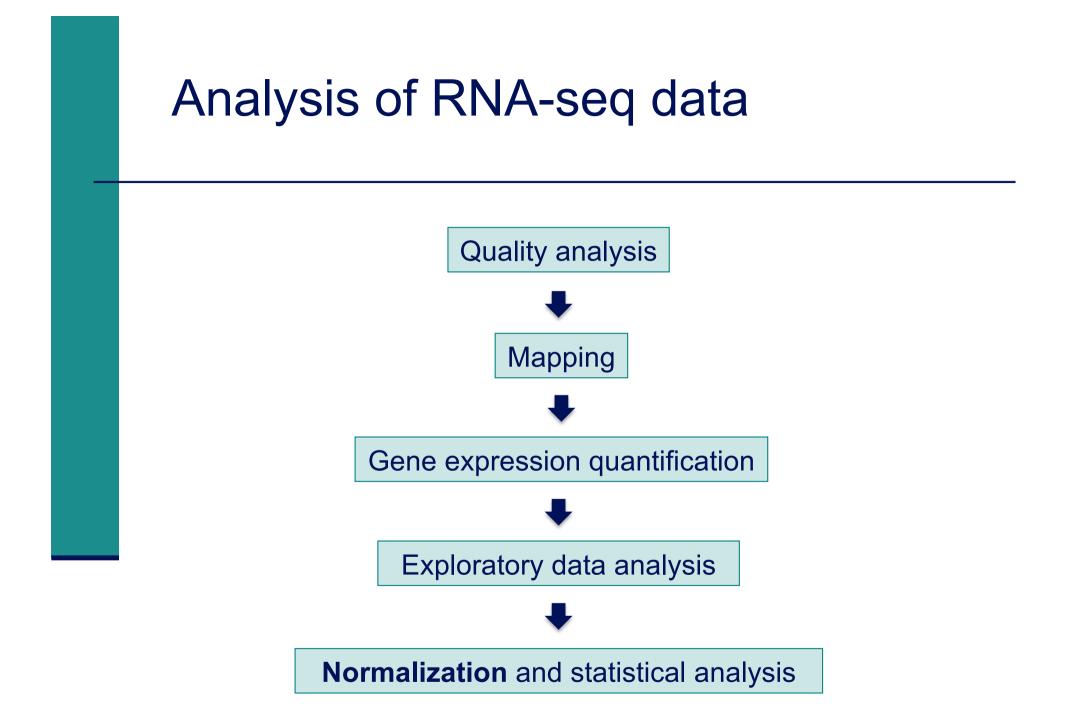
WT

Show

(-c, --condRef) Reference biological condition used to compute fold-changes, must be one of the levels of 'Factor of interest'.

Advanced Parameters

Add a blocking factor

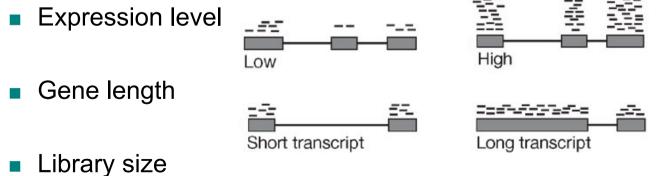


-batch) Adjustment variable to use as a batch effect. Default: unchecked if no batch effect needs to be taken into account.

Blocking factor value

batch

Must be a column of the target file


Normalization : why ?

To compare RNA-seq libraries

with different sizes, eg :

Sample name	Total number of reads
siLuc2	43,672,265
siLuc3	46,565,834
siMitf3	43,985,979
siMitf4	51,348,313

To compare the expression level of several genes within a library Indeed read counts depend on

Different normalization methods

- Based on distribution adjustment
 - Total read count
 - Motivation
 - Higher library size \rightarrow higher counts
 - Method

Divide counts by total number of reads

- Upper quartile (Bullard et al. BMC Bioinformatics 2010;11,94), Median
 - Motivation

Total read count is strongly dependent on a few highly expressed transcripts

Method

Divide counts by the upper quartile/median of the counts different from 0

- Quantile (Bolstad et al. Bioinformatics 2003; 19:185–93)
 - Assumption
 - Read counts have identical distribution across libraries
 - Method

Count distributions are matched between libraries

Different normalization methods

Take into account gene/transcript length

- RPKM (Mortazavi et al. Nat Methods 2008;5:621–8), FPKM
- Reads (Fragments) per Kilobase per Million mapped reads
- Assumption
 - Read counts =f(expression level, gene length, library size)
- Method
 - Divide counts by gene length (kb) and total number of reads (million)
- Allows to compare expression levels between genes

Different normalization methods

Based on the "effective library size" concept

- Assumption
 - Most genes are not differentially expressed
- 2 methods
 - Trimmed Mean of M values (Robinson et al. Genome Biol. 2010;11:R25)
 - DESeq normalization (Anders et al. Genome Biol. 2010;11:R106)

Which normalization method to choose ?

Comparison on 4 real and 1 simulated dataset

Summary of comparison results

Method	Distribution	Intra-Variance	Housekeeping	Clustering	False-positive rate
TC	-	+	+	-	-
$\mathbf{U}\mathbf{Q}$	++	++	+	++	-
Med	++	++	-	++	-
DESeq	++	++	++	++	++
TMM	++	++	++	++	++
Q	++	-	+	++	-
RPKM	-	+	+	-	-

- : the method provided unsatisfactory results for the given criterion

- + : satisfactory results
- ++: very satisfactory results

(Dillies et al. Brief. Bioinformatics 2013 Nov;14(6):671-83)

	lib1	lib2	lib3	lib j	lib n	n : number of samples to compare
gene1 gene2 gene3 gene4	468 45 2576 1678	475 56 560 1798	501 76 578 1867			
gene i				× _{ij}		xij : number of reads for gene i in sample j

(Anders et al. Genome Biol. 2010;11:R106)

	lib1	lib2	lib3	lib j	lib n	n : number of samples to compare
gene1 gene2 gene3 gene4	468 45 2576 1678	475 56 560 1798	501 76 578 1867			
gene i				X _{ij}		xij : number of reads for gene i in sample j

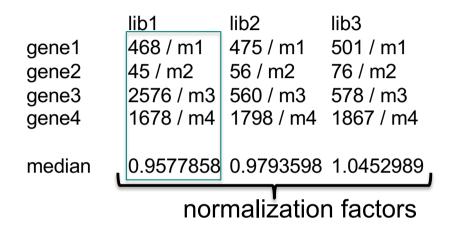
Normalization factor for library j :

$$\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$$

→ Each value is divided by the geometric mean of its row
→ Normalization factor = median of all these ratios

	lib1	lib2	lib3	mean
gene1	468	475	501	m1=481.1263
gene2	45	56	76	m2=57.64187
gene3	2576	560	578	m3=941.2115
gene4	1678	1798	1867	m4=1779.271

Normalization factor for library j :


 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

	lib1	lib2	lib3	mean
gene1	468 / m1	475 / m1	501 / m1	m1=481.1263
gene2	45 / m2	56 / m2	76 / m2	m2=57.64187
gene3	2576 / m3	560 / m3	578 / m3	m3=941.2115
gene4	1678 / m4	1798 / m4	1867 / m4	m4=1779.271

Normalization factor for library j :

 $\hat{s}_j = median_i rac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

→ Underlying idea : non-differentially expressed genes should have similar read counts across samples leading to a ratio of 1

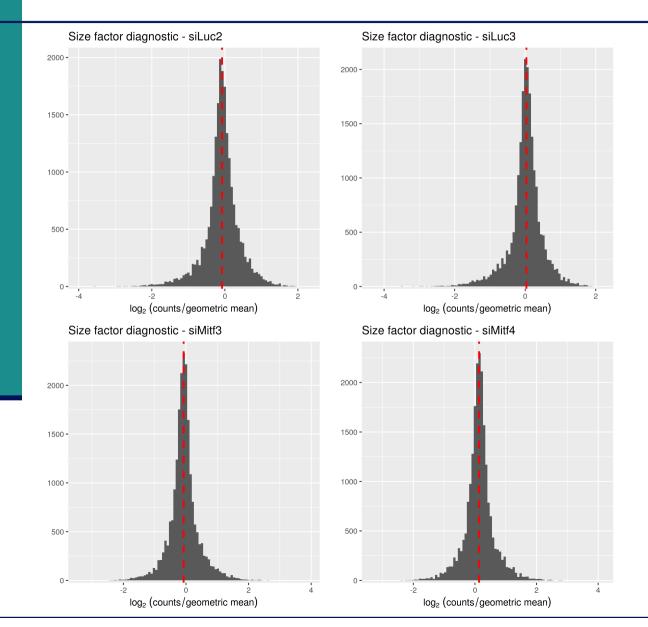
mean m1=481.1263 m2=57.64187 m3=941.2115 m4=1779.271

Normalization factor for library j :

 $\hat{s}_j = median_i \frac{x_{ij}}{(\prod_{\nu=1}^n x_{i\nu})^{1/n}}$

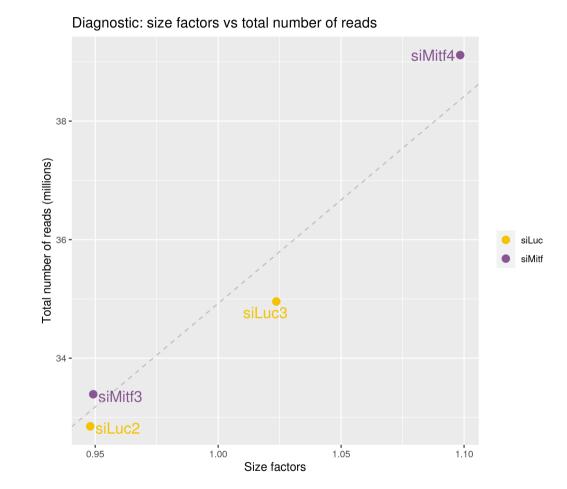
 \rightarrow Median of these ratios for a library \rightarrow estimate of the correction factor that should be applied to all read counts of this library

→ Normalized read counts = raw read counts / normalization factor

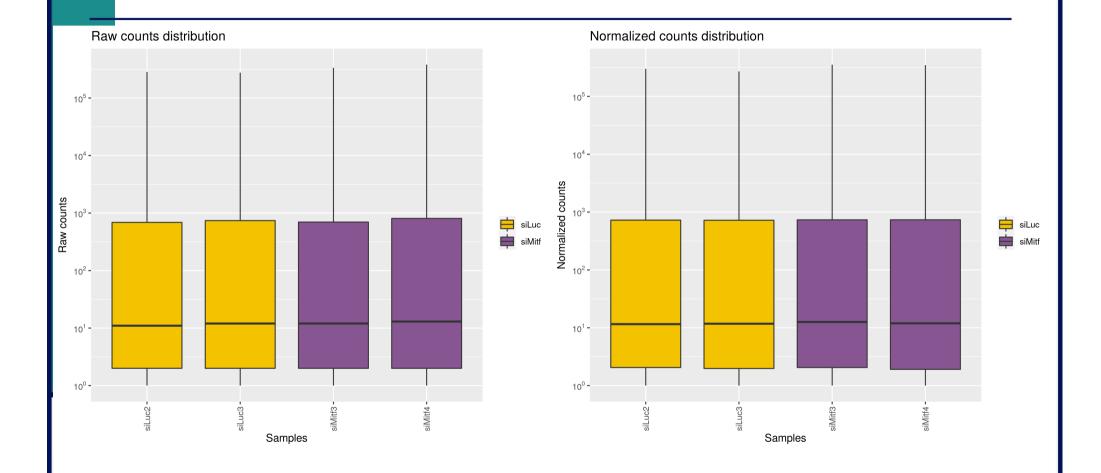

DESeq normalization

Normalization factors for Mitf dataset :

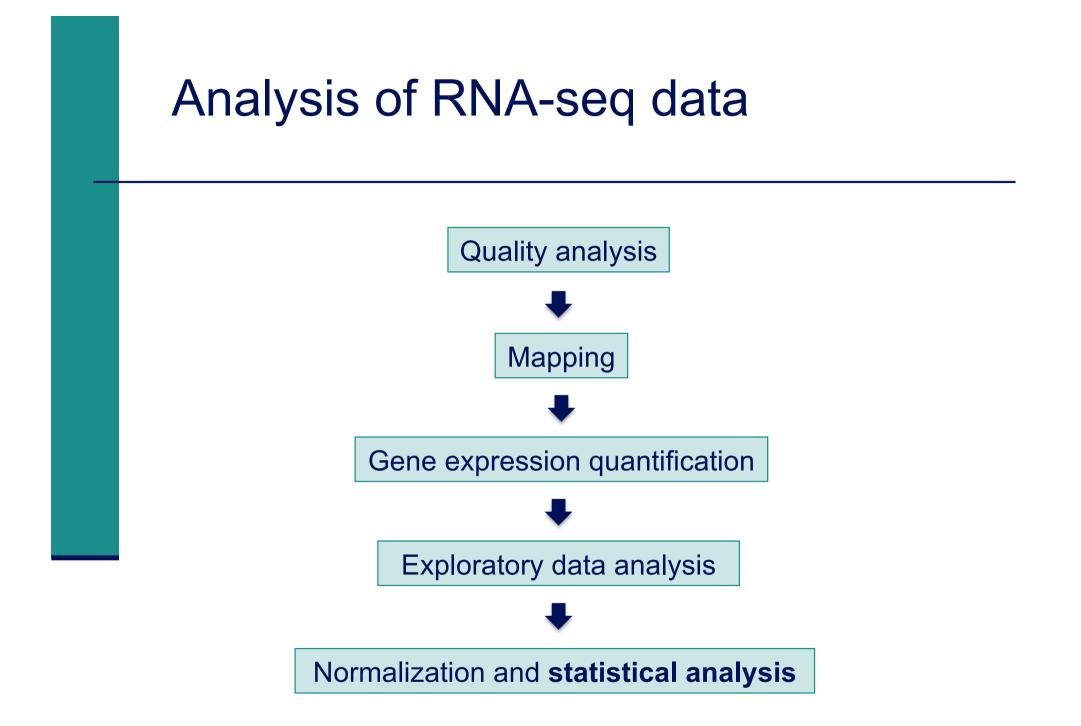
Table 5: Normalization factors.


	siLuc2	siLuc3	siMitf3	siMitf4
Size factor	0.95	1.02	0.95	1.1

Diagnostic plot for the estimation of normalization factors


This histogram should be unimodal, with a clear peak at the value of the size factor (represented in red)

Total number of reads vs size factors



Normalization by total number of reads and DESeq2 size factors is not exactly the same, but very close for this dataset

Boxplots of raw and normalized read counts

We expect normalization to stabilize distributions across samples

Search for significantly differentially expressed genes

- What is significant differential expression ?
 - The observed difference between conditions is statistically significant i.e. greater than expected just due to random variation
- Microarray vs RNA-seq
 - Microarray
 - Fluorescence proportional to expression \rightarrow continuous data
 - RNA-seq

Number of reads assigned to a feature (gene, transcript) proportional to expression \rightarrow count data

Here we focus on count-based measures of gene expression

Search for significantly differentially expressed genes

- Use only a fold-change ranking ?
 - Do not take variability into account
 - Do not take level of expression into account
 - No control of the false positive rate
- Hypothesis testing
 - For each gene
 - H0 : No gene expression difference between the compared conditions
 - H1 : There is a gene expression difference between the compared conditions

I Steps

- Choose a statistic
- Define a decision rule
 - Define a threshold below which we will reject H0

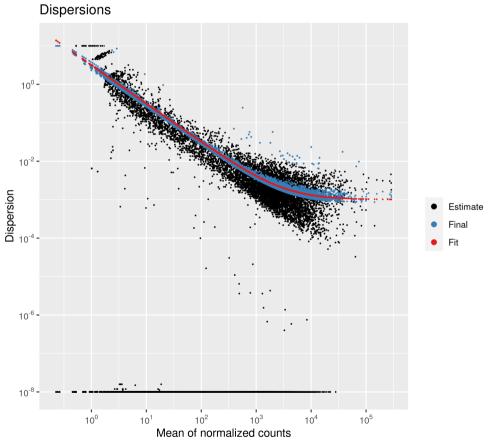
Statistic to search for significantly differentially expressed genes

- Sequencing a library = randomly and independently choose N sequences from the library
 - \rightarrow read counts ~ multinomial distribution
- High number of reads, probability of a read assigned to a given gene small → Poisson approximation
 - Distribution of counts across technical replicates for the majority of genes fit well to a Poisson distribution
 Marioni et al. Genome Research 2008;18(9):1509-17
 Bullard et al. BMC Bioinformatics 2010;11,94
- → Technical replicates ~ Poisson distribution

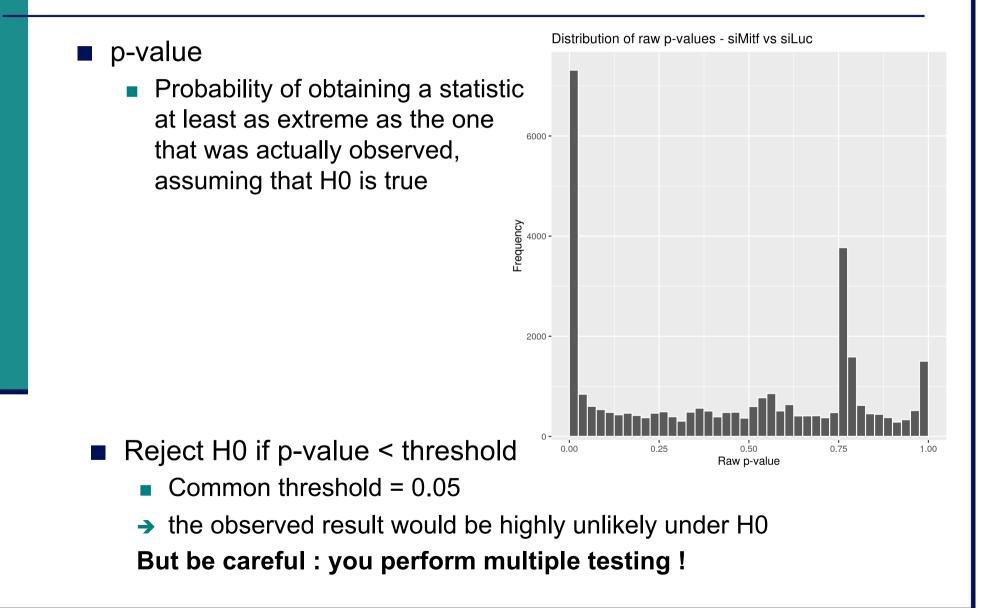
Statistic to search for significantly differentially expressed genes

But Poisson distribution : variance = mean

➔ Across biological replicates variance > mean for many genes (Anders et al. Genome Biology 2010;11:R106) : overdispersion


➔ Negative binomial distribution : a good alternative to Poisson in the case of overdispersion

 \rightarrow Biological replicates ~ Negative binomial distribution


- How to estimate the overdispersion parameter ?
 - Very few replicates → challenging issue
 - DESeq2 (Love et al. Genome Biol. 2014;15:550)
 Shares information across genes to improve the estimation of dispersion Assumes that genes of similar average expression strength have similar dispersion

Dispersion plot

- Black : gene dispersion values (calculated using only the observed counts)
- Red : curve fitted to black dots to capture the overall trend of dispersion-mean dependence
- The red curve is used as a prior mean for a second estimation round, which results in final **blue** values (used during the test)
- Dispersions outliers (blue) → for these genes the statistical test is based on the empirical variance to be more conservative

Definition of a decision rule

Multiple testing problem

- To identify significantly differentially expressed genes
 → as many tests as the number of genes (G)
- With a type I error α for each gene
 - we expect to find $G\alpha$ false positives
 - i.e. $G\alpha$ genes declared to be differentially expressed even if there are not
 - e.g. G=30,000 genes α =0.05 \rightarrow we expect to find 1,500 false positives
 - \rightarrow Important to control the false positive rate when we make a lot of tests

2 points of views

- Individually consider the differentially expressed genes sorted according to a statistic
- Consider a list of differentially expressed genes, in which we would like to control the false positive rate
 - → Use a multiple testing correction

Multiple testing correction methods

- Family-Wise Error Rate (FWER)
 - Probability to have at least one false positive
 - e.g. FWER = $0.05 \rightarrow 5\%$ chances of having at least one false positive
- Bonferroni method
 - Bonferroni
 - $p_{g_{adjusted}} = min (Gp_g, 1)$
 - \rightarrow Each test is performed with a type I error α/G
 - Very conservative method (Ge et al. TEST 2003;12(1):1-77)

Multiple testing correction methods

False Discovery Rate (FDR)

- Expected proportion of false positives among genes declared as differentially expressed
- e.g. FDR = 0.05 → We expect to find 5% of false positives among genes declared as significantly differentially expressed

Benjamini and Hochberg method
 (Journal of the R. Stat. Soc., Series B 57 (1): 125–133)

Calculation of adjusted p-values that allows to control the FDR

How many genes are significantly differentially expressed between siMitf and siLuc (FDR<0.05) ?

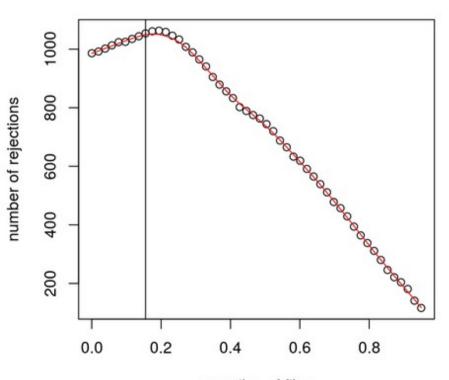
Significantly differentially expressed genes

Number of significantly differentially expressed genes between siMitf and siLuc (FDR<0.05) :</p>

Table 7: Number of up-, down- and total number of differentially expressed features for each comparison.

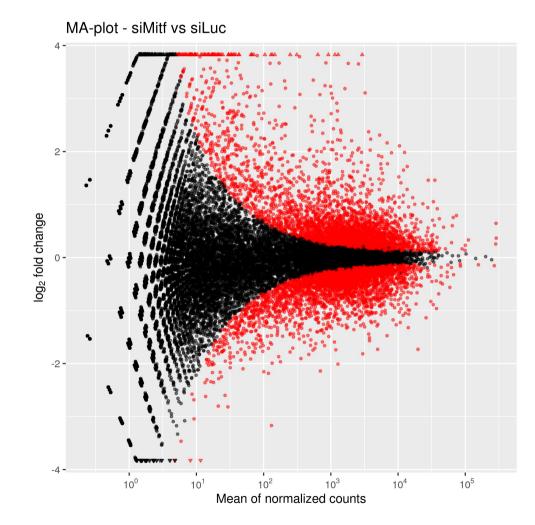
Test vs Ref	# down	# up	# total
siMitf vs siLuc	3282	3762	7044

- \rightarrow 7044 significantly differentially expressed genes
 - \rightarrow 3282 genes significantly under-expressed in siMitf vs siLuc
 - \rightarrow 3762 genes significantly over-expressed in siMitf vs siLuc

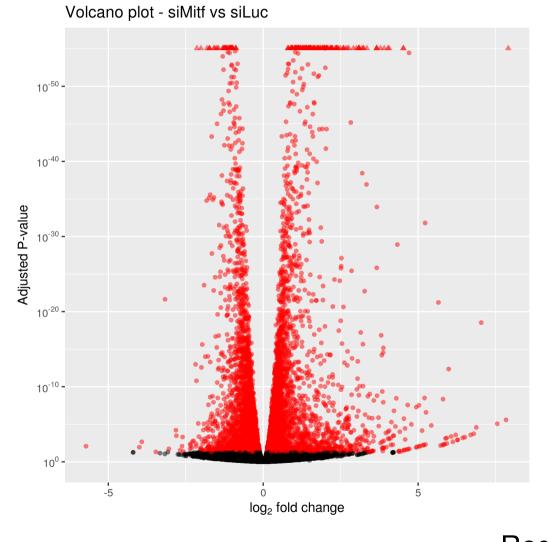

Independant filtering

- Goal : filter out those tests from the procedure that have no, or little chance of being significant, without even looking at their test statistic
 - → Results in increased detection power at the same type I error
- Genes with very low counts are not likely to be significantly differentially expressed typically due to high dispersion
 - DESeq2 defines a threshold on the mean of the normalized counts irrespective of the biological condition
 - → Independent because the information about the variables in the design formula is not used (Love et al. Genome Biol. 2014;15:550)

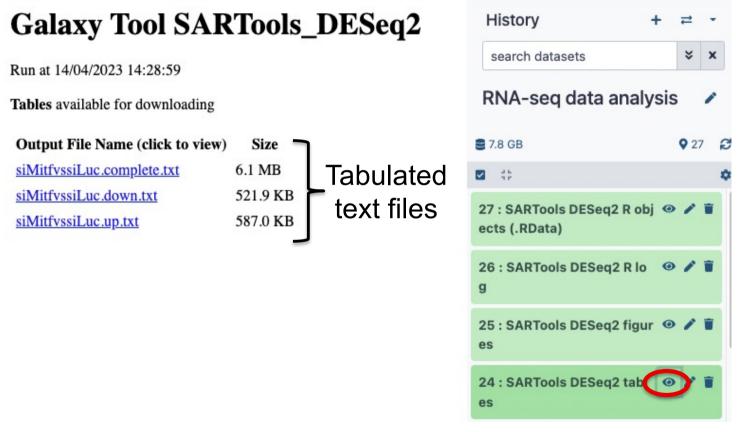
Genes discarded by the independent filtering \rightarrow adjusted p-value = NA in the results table


Independant filtering

- Maximizes the number of rejections
 - adjusted p-value less than a significance level
- over the quantiles of a filter statistic
 - the mean of normalized counts
- Threshold chosen (vertical line)
 - Lowest quantile of the filter for which the number of rejections is within 1 residual standard deviation to the peak of a curve fit to the number of rejections over the filter quantiles:


quantiles of filter

Visualization of significantly differentially expressed genes : MA-plot



Red dots : FDR < 0.05 Triangles : features having a too low/high log_2FC to be displayed on the plot

Visualization of significantly differentially expressed genes : volcano plot

Red dots : FDR < 0.05

- The format of the 3 tables is the same
- Download siMitfvssiLuc.up.txt file
- Open this file with Excel

A	В	С	D	E	F	G	н		J	к	L	м	N	о	Р	Q	R	S	Т	U	v	w
1 ld	siLuc2	siLuc3	siMitf3	siMitf4	norm.siLuc2	norm.siLuc3	norm.siMitf3	norm.siMitf4	baseMean	siLuc	siMitf	FoldChange	log2FoldCha	stat	pvalue	padj	dispGeneEs	t dispFit	dispMAP	dispersion	betaConv	maxCooks
2 ENSG000000	4685	5261	18762	22078	4942	5139	19766	20100	12486.79	5040	19933	3.954	1.983	39.51	C	0	2,00E-04	0.0013	0.0011	0.0011	TRUE	NA
3 ENSG000000	1716	1806	8410	9728	1810	1764	8860	8856	5322.69	1787	8858	4.957	2.31	39.245	C	0	(0.0016	0.0013	0.0013	TRUE	NA
4 ENSG000001	3063	3316	12095	13980	3231	3239	12742	12727	7985	3235	12734	3.936	1.977	37.64	C	0	(0.0014	0.0011	0.0011	TRUE	NA
5 ENSG000001	309	415	5096	6161	326	405	5369	5609	2927.25	366	5489	14.978	3.905	43.594	C	0	0.0094	0.0021	0.0024	0.0024	TRUE	NA
6 ENSG000001	3764	4038	15976	18969	3971	3945	16831	17269	10503.85	3958	17050	4.308	2.107	41.423	C	0	(0.0013	0.0011	0.0011	TRUE	NA
7 ENSG000001	352	397	4575	5198	371	388	4820	4732	2577.8	380	4776	12.576	3.653	43.641	C	0	(0.0022	0.0019	0.0019	TRUE	NA
8 ENSG000001	679	647	5384	6504	716	632	5672	5921	3235.4	674	5796	8.608	3.106	40.262	C	0	0.0027	0.002	0.002	0.002	TRUE	NA
9 ENSG000001	244	280	3101	3800	257	274	3267	3459	1814.34	266	3363	12.663	3.663	37.5	9.28197542	5 2.123367903	3 (0.0027	0.0025	0.0025	TRUE	NA
0 ENSG000001	136	151	2266	2714	143	148	2387	2471	1287.26	146	2429	16.692	4.061	34.318	4.25580929	9 7.788556598	3 (0.0035	0.003	0.003	TRUE	NA

 \rightarrow 1 line per gene, 23 columns

siLuc2 siLuc3 siMitf3 siMitf4

Raw read counts in each sample

norm.siLuc2 norm.siLuc3 norm.siMitf3 norm.siMitf4

Rounded normalized counts in each sample

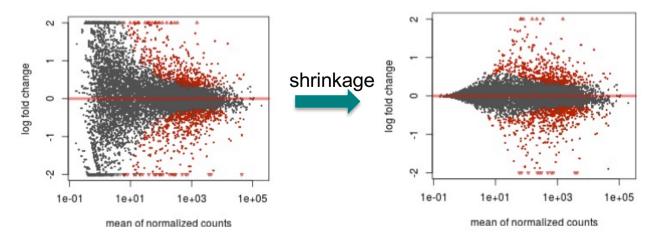
baseMean

Mean of normalized counts over all samples

siLuc siMitf

Rounded mean of normalized counts over siLuc or siMitf samples

FoldChange


Expression fold change = 2^{log2FoldChange}

log2FoldChange

- Iog2FoldChange estimated by the generalized linear model
 - Reflects the differential expression between siMitf and siLuc
 - $\sim 0 \rightarrow$ similar gene expression in both conditions
 - >0 \rightarrow over-expressed gene (siMitf > siLuc)
 - <0 \rightarrow under-expressed gene (siMitf < siLuc)

log2 fold-change (LFC) shrinkage

- To improve stability and interpretability of LFC estimates
- High variance of LFC for genes with low read counts
 - Count data \rightarrow ratios are inherently noisier when counts are low
- Shrinkage of LFC estimates toward zero
 - Shrinkage is stronger when the information for a gene is low (counts are low or dispersion is high)
 - Avoids that these values, which otherwise would frequently be unrealistically large, dominate the top-ranked LFC
- Shrunken LFC offer a more reproducible quantification of transcriptional differences than standard LFC (Love et al. Genome Biol. 2014;15:550)

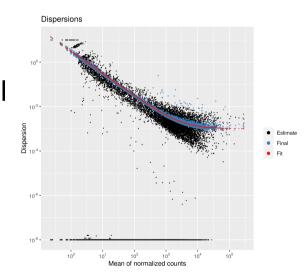
stat pvalue padj

Statistic, p-value and p-value adjusted for multiple testing

dispGeneEst

- Dispersion parameter estimated from gene counts
 - i.e. black dots on dispersion plot

dispFit

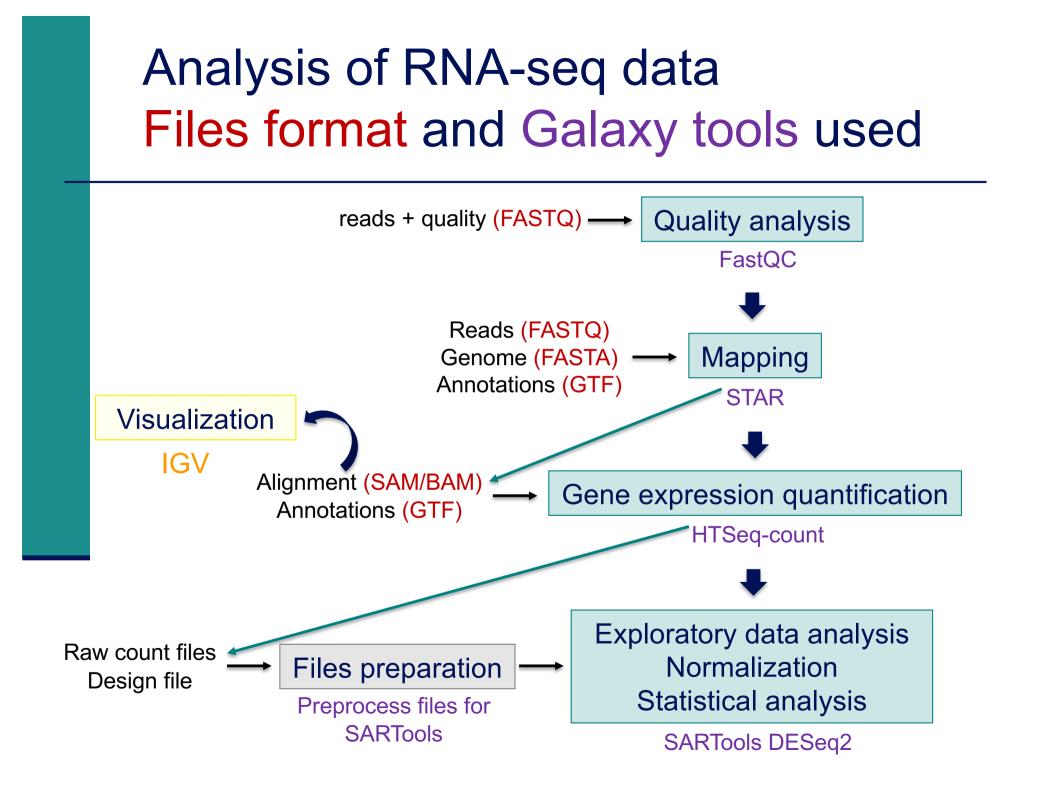

- Dispersion parameter estimated from the model
 - i.e. red dots on dispersion plot

dispMAP

- Maximum *a posteriori* dispersion parameter
 - i.e. blue dots on dispersion plot

dispersion

- Final dispersion parameter used to perform the test
 - i.e. blue dots (with dispersion outliers) on dispersion plot



betaConv

- Convergence of the coefficients of the model (True of False)
 - For siMitf project the model converges for all genes

maxCooks

- Maximum Cook's distance of the gene
- If the gene has been detected as a count outlier
 - DESeq2 automatically flags genes which contain a high Cook's distance for samples with 3 or more replicates
 - Therefore = NA for Mitf project
 - Cook's distance
 - Measures of how much a single sample is influencing the fitted coefficients for a gene
 - Large value of Cook's distance is intended to indicate an outlier count

RNA-seq data submission to a public data repository

- ArrayExpress (European Nucleotide Archive)
- Gene Expression Omnibus (Sequence Read Archive)
 - How to proceed ? https://www.ncbi.nlm.nih.gov/geo/info/seq.html
 - Assembling your submission
 - Metadata spreadsheet : descriptive information about the study
 - Raw data files : FASTQ
 - Processed data files : raw / normalized reads counts
 - Uploading your submission
 - Transfer files to the GEO FTP server
 - Notify GEO and specify when your submission should be released to the public (a private access token can be created for distribution to journal reviewers)