
Analysis of RNA-seq data

Céline Keime
keime@igbmc.fr



Analysis of RNA-seq data

Quality analysis

Mapping

Exploratory data analysis

Normalization and statistical analysis

Gene expression quantification



Analysis of RNA-seq data

Quality analysis

Mapping

Exploratory data analysis

Normalization and statistical analysis

Gene expression quantification

FASTQ (reads + quality)

SAM/BAM (alignment)
GTF (annotations)

SAM/BAM
FASTQ (reads)

FASTA (genome)
GTF (annotations)



Analysis of RNA-seq data

Quality analysis

Mapping

Exploratory data analysis

Normalization and statistical analysis

Gene expression quantification



Gene-level quantification

< How to summarize expression level of genes with several isoforms ?

< Exon-union method
Count reads mapped to all exons from all isoforms of the gene

< Exon-intersection method
Count only reads mapped to its constitutive exons

è reduce power for differential expression analysis

Isoform 1

Isoform 2

Gene

Garber et al., Nature methods 2011; 8(6):469-77 
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Gene-level quantification : 
HTSeq-count

< How to deal with multiple aligned reads ?
< Multi-mapped reads are discarded rather than counted for each feature

< Because the primary intended use case for htseq-count is differential 
expression analysis

< i.e. comparison of the expression of the same gene across samples
< Why ?

< Consider 2 genes with multiple aligned reads on these genes
< Discard multiple aligned reads 

< à undercount the total output of these 2 genes
< But the expression ratio between conditions will still be correct 
< Because we discard the same fraction of reads in all samples

< If we counted these reads for both genes 
< à differential expression analysis might find false positives
< Even if only one of the gene is differentially expressed
< Multi-mapped reads would be counted for both genes
< Gives the wrong appearance that both genes are differentially expressed

Anders et al., Bioinformatics 2015;31(2):166-9



Gene-level quantification : 
HTSeq-count

< How to deal with overlapping features ?

https://htseq.readthedocs.io/en/latest/count.html



HTSeq-count

< Input
< Alignment file (SAM/BAM)
< Annotation file (GFF/GTF) with the same chromosome names 

as in the alignment file
< Options

OK for 
Ensembl
cf. next slide

Reverse for a directional protocol 
that generates reads in the 
opposite strand as the 
transcribed one
No for a non-directional protocol

cf. previous slide



Ensembl GTF file

Source Type Start End Score Strand PhaseSeqid Attributes

gene_id "ENSG00000115009"; gene_version "11"; transcript_id "ENST00000409189"; 
transcript_version "7"; exon_number "1"; gene_name "CCL20"; gene_source "ensembl_havana"; 
gene_biotype "protein_coding"; havana_gene "OTTHUMG00000133189"; havana_gene_version "3"; 
transcript_name "CCL20-001"; transcript_source "havana"; transcript_biotype "protein_coding"; …

3rd column

à ID Attribute :

à Feature type : 



Exercise : quantification of gene 
expression using HTSeq-count on Galaxy

< Launch HTSeq-count to quantify gene expression on 
siLuc2_1000000 sample

< Inputs
< Alignment file you obtained with STAR on 

siLuc2_1000000.fastq.gz
< Annotations : Ensembl release 105 GTF file : 

Homo_sapiens.GRCh38.105.chr.gtf.gz (already imported)



Exercise : quantification of gene expression 
using HTSeq-count on Galaxy

Alignment file you obtained with STAR on siLuc2_1000000



HTSeq-count on Galaxy

<Output
< A tabulated text file providing

< A tabulated text file 
containing the number of 
reads assigned to each gene

the number of reads not 
assigned to genes
the number of alignments 
not taken into account



HTSeq-count

< Results on siLuc2_1000000
1. Among uniquely mapped reads, what is the proportion of 
assigned, no feature and ambiguous reads ?
à What is the number of uniquely mapped reads ?
à What is the number of no feature reads ? Calculate the 

corresponding proportion
à What is the number of ambiguous reads ? Calculate the 

corresponding proportion
à Calculate the proportion of assigned reads



HTSeq-count

< Results on whole dataset
< Gene quantification results on the whole dataset are available 

in “NGS data analysis training Strasbourg” history
< Summary of quantification results

Sample
name

% of assigned
reads

% of no 
feature reads

% of ambiguous
reads

siLuc2 88.22 7.95 3.83
siLuc3 87.61 8.62 3.77
siMitf3 88.91 7.43 3.65
siMitf4 89.32 6.98 3.70



Transcript-level quantification

< Some reads cannot be assigned unequivocally to a transcript

< Alexa-seq (Griffith et al. Nature methods 2010)

Counts only reads that map uniquely to a single isoform è Fails for genes that do not 
contain unique exons from which to estimate isoform expression

< Cufflinks (Trapnell et al. Nature Biotechnology 2010) ; MISO (Katz et al. Nature Methods 2010) ; 
RSEM (Li et al. BMC Bioinformatics 2011)

< Construct a likelihood function that models the sequencing process 
< Calculate isoforms abundance estimates that best explain the reads observed in 

the experiment
< Alignment-free methods

< Salmon (Patro et al. Nature methods 2017) ; kallisto (Bray et al. Nature Biotechnology 2016)

< Search which transcript has generated the read
< Where the read aligns is not necessary

< Ultra-fast methods

Isoform 1

Isoform 2
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à Launch exploratory data analysis, 
normalization and statistical analysis on Galaxy



Exercise : SARTools

< SARTools
< R package dedicated to differential analysis of RNA-seq data
< Allows to

< Generate descriptive and diagnostic graphs
< Run differential analysis with DESeq2 or edgeR package
< Export the results into tab-delimited files
< Generate a report

< Does not replace DESeq2 or edgeR but simply provides an 
environment to use some of their functionalities

à We will use SARTools with DESeq2



< Input files for SARTools
< A zip file containing raw counts files
< A design file describing the experiment

< Design file for the analysis we would like to perform :

à These files can be prepared using the tool 
“Preprocess files for SARTools”

Exercise : SARTools



< Launch statistical analysis using SARTools DESeq2
1. Import raw count files obtained on the whole dataset

< 17 : htseq-count on siLuc2
< 18 : htseq-count on siLuc3
< 19 : htseq-count on siMitf3
< 20 : htseq-count on siMitf4

2. Prepare files for SARTools using Preprocess files 
for SARTools

3. Launch SARTools DESeq2

Exercise : SARTools



Exercise
1. Import raw counts files

< Import all counts tables that have been obtained with 
HTSeq-count on the whole dataset (datasets 17 to 20) :



Exercise
2. Prepare files for SARTools

< Use the tool Preprocess files for SARTools



Exercise
2. Prepare files for SARTools



Exercise
2. Prepare files for SARTools : results



Exercise
3. Launch SARTools DESeq2

without space



SARTools results

< Figures



SARTools results

All genes
Only significant down-regulated genes
(i.e. less expressed in siMitf than in siLuc)
Only significant up-regulated genes
(i.e. more expressed in siMitf than in siLuc)

< Tables



SARTools results

< Report
< Provides details about the methodology, the different steps and results
< Displays all figures produced + a summary of differential analysis results



SARTools results

<Report
< Description of raw data



Total read count per sample

Different between samples, as expected à normalization needed
More difficult when major differences between samples



Proportion of null counts per sample

Proportion of genes with null 
counts in all samples
à Such genes are left in the 
data but not taken into 
account in the analysis 
(results=NA in the result file)

We expect this proportion to be similar between samples



Density distribution of read counts

We expect replicates to have similar distributions



Proportion of reads 
from most expressed genes

We expect these high count features to be the same across replicates
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Exploration and visualization of data

< Essential step before any analysis
< Allows data quality assessment and control
< Eventually leads to remove data with insufficient quality



Pairwise comparison of samples

SERE values

We expect replicates to have correlated read counts



SERE coefficient

< Simple Error Ratio Estimate (Schulze et al. BMC Genomics 2012;13:524)

Observed standard deviation between two samples
Value that would be expected from an ideal experiment

< SERE = 0 è sample duplication
< SERE = 1 è technical replication 
< SERE > 1 è biological variation
< SERE é è Similarity ê

SERE =



Data transformation

< Many methods for exploratory data analysis (clustering, PCA) work best 
for data that generally have the same range of variance at different 
ranges of mean values

< However this is not the case for RNA-seq data
< To avoid that results are dominated by a few highly variable genes
à Remove the dependence of the variance on the mean : 

VST (variance-stabilizing transformation ; Anders et al. Genome Biology 2010, 11:106)

à Only for exploratory data analysis ! 

https://bioconductor.org/packa
ges/release/bioc/vignettes/DE
Seq2/inst/doc/DESeq2.html



Samples clustering

We expect this dendrogram to group replicates and separate biological conditions

Obtained from VST-
transformed data



Principal Component Analysis

The first principal component is expected to separate samples from the 
different biological conditions 
(i.e. corresponds to the main source of variance in the data)

Obtained from VST-transformed data



Data exploration on another dataset : 
outlier sample



Data exploration on another dataset : 
batch effect

Batch 2
(day 2)

Batch 1
(day 1)

à Take into account this batch effect in statistical analysis



Take into account batch effect in SARTools
1. Preprocess files for SARTools 
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Take into account batch effect in SARTools
1. Preprocess files for SARTools 



<Design file :

Take into account batch effect in SARTools
1. Preprocess files for SARTools



Take into account batch effect in SARTools
2. SARTools DESeq2
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Normalization : why ?

< To compare RNA-seq libraries
< with different sizes, eg :

< To compare the expression level of several genes within a library
Indeed read counts depend on
< Expression level

< Gene length

< Library size

Sample name Total number of reads
siLuc2 43,672,265
siLuc3 46,565,834
siMitf3 43,985,979
siMitf4 51,348,313



Different normalization methods

< Based on distribution adjustment
< Total read count 

< Motivation 
Higher library size è higher counts
< Method 
Divide counts by total number of reads

< Upper quartile (Bullard et al. BMC Bioinformatics 2010;11,94), Median
< Motivation 
Total read count is strongly dependent on a few highly expressed transcripts
< Method 
Divide counts by the upper quartile/median of the counts different from 0

< Quantile (Bolstad et al. Bioinformatics 2003; 19:185–93)
< Assumption 

Read counts have identical distribution across libraries
< Method 

Count distributions are matched between libraries



Different normalization methods

< Take into account gene/transcript length
< RPKM (Mortazavi et al. Nat Methods 2008;5:621–8), FPKM
< Reads (Fragments) per Kilobase per Million mapped reads
< Assumption

< Read counts =f(expression level, gene length, library size)
< Method

< Divide counts by gene length (kb) and total number of reads (million)
< Allows to compare expression levels between genes



Different normalization methods

< Based on the “effective library size” concept
< Assumption

< Most genes are not differentially expressed
< 2 methods

< Trimmed Mean of M values (Robinson et al. Genome Biol. 2010;11:R25)

< DESeq normalization (Anders et al. Genome Biol. 2010;11:R106)



Which normalization method to choose ?

< Comparison on 4 real and 1 simulated dataset

< Summary of comparison results

- : the method provided unsatisfactory results for the given criterion
+ : satisfactory results
++ : very satisfactory results

(Dillies et al. Brief. Bioinformatics 2013 Nov;14(6):671-83) 



DESeq normalization method

lib1 lib2 lib3      … lib j lib n

gene1 468 475 501 
gene2 45 56 76
gene3 2576 560 578
gene4 1678 1798 1867
…
gene i xij

n : number of samples to compare

xij : number of reads 
for gene i in sample j

(Anders et al. Genome Biol. 2010;11:R106)



DESeq normalization method

lib1 lib2 lib3      … lib j lib n

gene1 468 475 501 
gene2 45 56 76
gene3 2576 560 578
gene4 1678 1798 1867
…
gene i xij

Normalization factor for library j :

è Each value is divided by the geometric mean of its row
è Normalization factor = median of all these ratios

n : number of samples to compare

xij : number of reads 
for gene i in sample j



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 475 501 m1=481.1263
gene2 45 56 76 m2=57.64187
gene3 2576 560 578 m3=941.2115
gene4 1678 1798 1867 m4=1779.271

Normalization factor for library j :



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 / m1 475 / m1 501 / m1 m1=481.1263
gene2 45 / m2 56 / m2 76 / m2 m2=57.64187
gene3 2576 / m3 560 / m3 578 / m3 m3=941.2115
gene4 1678 / m4 1798 / m4 1867 / m4 m4=1779.271

Normalization factor for library j :

è Underlying idea : non-differentially expressed genes should 
have similar read counts across samples leading to a ratio of 1 



DESeq normalization method

lib1 lib2 lib3    mean
gene1 468 / m1 475 / m1 501 / m1 m1=481.1263
gene2 45 / m2 56 / m2 76 / m2 m2=57.64187
gene3 2576 / m3 560 / m3 578 / m3 m3=941.2115
gene4 1678 / m4 1798 / m4 1867 / m4 m4=1779.271

median 0.9577858 0.9793598 1.0452989

Normalization factor for library j :

normalization factors 

à Median of these ratios for a library à estimate of the correction factor that 
should be applied to all read counts of this library
à Normalized read counts = raw read counts / normalization factor 



DESeq normalization

< Normalization factors for Mitf dataset :



Diagnostic plot for the estimation of 
normalization factors

This histogram should 
be unimodal, 
with a clear peak at the 
value of the size factor 
(represented in red)



Total number of reads vs size factors

Normalization by total number of reads and DESeq2 size factors is not 
exactly the same, but very close for this dataset 



Boxplots of raw and normalized read counts

We expect normalization to stabilize distributions across samples
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Search for 
significantly differentially expressed genes

< What is significant differential expression ?
< The observed difference between conditions is statistically significant

i.e. greater than expected just due to random variation

< Microarray vs RNA-seq
< Microarray 

Fluorescence proportional to expression è continuous data
< RNA-seq

Number of reads assigned to a feature (gene, transcript) proportional 
to expression è count data

< Here we focus on count-based measures of gene expression



Search for 
significantly differentially expressed genes

< Use only a fold-change ranking ?
< Do not take variability into account
< Do not take level of expression into account
< No control of the false positive rate

< Hypothesis testing
< For each gene

< H0 : No gene expression difference between the compared conditions
< H1 : There is a gene expression difference between the compared conditions

< Steps
< Choose a statistic
< Define a decision rule

< Define a threshold below which we will reject H0



Statistic to search for 
significantly differentially expressed genes

< Sequencing a library = randomly and independently choose N 
sequences from the library
à read counts ~ multinomial distribution

< High number of reads, probability of a read assigned to a given 
gene small à Poisson approximation
< Distribution of counts across technical replicates for the majority of 

genes fit well to a Poisson distribution 
Marioni et al. Genome Research 2008;18(9):1509-17
Bullard et al. BMC Bioinformatics 2010;11,94

à Technical replicates ~ Poisson distribution



Statistic to search for 
significantly differentially expressed genes

< But Poisson distribution : variance = mean
è Across biological replicates variance > mean for many genes 
(Anders et al. Genome Biology 2010;11:R106) : overdispersion
è Negative binomial distribution : a good alternative to Poisson in the case 
of overdispersion

à Biological replicates ~ Negative binomial distribution

< How to estimate the overdispersion parameter ?
< Very few replicates è challenging issue
< DESeq2 (Love et al. Genome Biol. 2014;15:550)

Shares information across genes to improve the estimation of dispersion
Assumes that genes of similar average expression strength have similar 
dispersion



Dispersion plot

< Black : gene dispersion values 
(calculated using only the observed 
counts)

< Red : curve fitted to black dots to 
capture the overall trend of 
dispersion-mean dependence

< The red curve is used as a prior 
mean for a second estimation 
round, which results in final blue
values (used during the test)

< Dispersions outliers (blue) à for 
these genes the statistical test is 
based on the empirical variance to 
be more conservative



Definition of a decision rule

< p-value
< Probability of obtaining a statistic 

at least as extreme as the one 
that was actually observed, 
assuming that H0 is true

< Reject H0 if p-value < threshold
< Common threshold = 0.05
è the observed result would be highly unlikely under H0
But be careful : you perform multiple testing !



Multiple testing problem

< To identify significantly differentially expressed genes
à as many tests as the number of genes (G)

< With a type I error a for each gene
< we expect to find Ga false positives
< i.e. Ga genes declared to be differentially expressed even if there are not
< e.g. G=30,000 genes a=0.05 à we expect to find 1,500 false positives
à Important to control the false positive rate when we make a lot of tests

< 2 points of views
< Individually consider the differentially expressed genes sorted according 

to a statistic
< Consider a list of differentially expressed genes, in which we would like to 

control the false positive rate
è Use a multiple testing correction



Multiple testing correction methods

< Family-Wise Error Rate (FWER)
< Probability to have at least one false positive
< e.g. FWER = 0.05 è 5% chances of having at least one false positive

< Bonferroni method
< Bonferroni

pg_adjusted = min (Gpg, 1)
è Each test is performed with a type I error a/G

< Very conservative method (Ge et al. TEST 2003;12(1):1-77)



Multiple testing correction methods

< False Discovery Rate (FDR)
< Expected proportion of false positives among genes declared as 

differentially expressed
< e.g. FDR = 0.05 è We expect to find 5% of false positives among 

genes declared as significantly differentially expressed

< Benjamini and Hochberg method 
(Journal of the R. Stat. Soc., Series B 57 (1): 125–133)

< Calculation of adjusted p-values that allows to control the FDR

How many genes are significantly differentially expressed 
between siMitf and siLuc (FDR<0.05) ?



Significantly differentially expressed 
genes
< Number of significantly differentially expressed genes between 

siMitf and siLuc (FDR<0.05) :

à 7044 significantly differentially expressed genes
à 3282 genes significantly under-expressed in siMitf vs siLuc
à 3762 genes significantly over-expressed in siMitf vs siLuc



Independant filtering

< Goal : filter out those tests from the procedure that have no, 
or little chance of being significant, without even looking at 
their test statistic 
à Results in increased detection power at the same type I error 

< Genes with very low counts are not likely to be significantly 
differentially expressed typically due to high dispersion 
à DESeq2 defines a threshold on the mean of the normalized 

counts irrespective of the biological condition 
à Independent because the information about the variables in the 

design formula is not used (Love et al. Genome Biol. 2014;15:550)

Genes discarded by the independent filtering
à adjusted p-value = NA in the results table



Independant filtering

< Maximizes the number of rejections 
< adjusted p-value less than a significance level 

< over the quantiles of a filter statistic 
< the mean of normalized counts

< Threshold chosen (vertical line) 
< Lowest quantile of the filter 

for which the number of 
rejections is within 1 residual 
standard deviation to the 
peak of a curve fit to the 
number of rejections over the 
filter quantiles:



Visualization of significantly differentially 
expressed genes : MA-plot

Red dots : FDR < 0.05
Triangles : features having a too low/high log2FC to be displayed on the plot



Visualization of significantly differentially 
expressed genes : volcano plot

Red dots : FDR < 0.05



Differential analysis results

< The format of the 3 tables is the same
< Download siMitfvssiLuc.up.txt file
< Open this file with Excel

Tabulated 
text files



Differential analysis results

à 1 line per gene, 23 columns



Differential analysis results

< Raw read counts in each sample 

< Rounded normalized counts in each sample

< Mean of normalized counts over all samples

< Rounded mean of normalized counts over siLuc or siMitf samples

< Expression fold change = 2log2FoldChange

< log2FoldChange estimated by the generalized linear model
< Reflects the differential expression between siMitf and siLuc
< ~0 à similar gene expression in both conditions
< >0 à over-expressed gene (siMitf > siLuc)
< <0 à under-expressed gene (siMitf < siLuc)



log2 fold-change (LFC) shrinkage

< To improve stability and interpretability of LFC estimates
< High variance of LFC for genes with low read counts

< Count data à ratios are inherently noisier when counts are low
< Shrinkage of LFC estimates toward zero

< Shrinkage is stronger when the information for a gene is low 
(counts are low or dispersion is high)

< Avoids that these values, which otherwise would frequently be 
unrealistically large, dominate the top-ranked LFC

< Shrunken LFC offer a more reproducible quantification of 
transcriptional differences than standard LFC (Love et al. Genome Biol. 2014;15:550)

shrinkage



Differential analysis results

< Statistic, p-value and p-value adjusted for multiple testing

< Dispersion parameter estimated from gene counts
< i.e. black dots on dispersion plot

< Dispersion parameter estimated from the model
< i.e. red dots on dispersion plot

< Maximum a posteriori dispersion parameter
< i.e. blue dots on dispersion plot

< Final dispersion parameter used to perform the test
< i.e. blue dots (with dispersion outliers) on dispersion plot



Differential analysis results

< Convergence of the coefficients of the model (True of False)
< For siMitf project the model converges for all genes

< Maximum Cook’s distance of the gene
< If the gene has been detected as a count outlier 

< DESeq2 automatically flags genes which contain a high Cook’s 
distance for samples with 3 or more replicates

< Therefore = NA for Mitf project
< Cook’s distance

< Measures of how much a single sample is influencing the fitted coefficients 
for a gene 

< Large value of Cook’s distance is intended to indicate an outlier count 
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reads + quality (FASTQ)

Alignment (SAM/BAM) 
Annotations (GTF)

Reads (FASTQ)
Genome (FASTA)
Annotations (GTF)

Raw count files
Design file

SARTools DESeq2

HTSeq-count

STAR

FastQC

Visualization
IGV

Files preparation
Preprocess files for 

SARTools



RNA-seq data submission to a public 
data repository
< ArrayExpress (European Nucleotide Archive)
< Gene Expression Omnibus (Sequence Read Archive)

< How to proceed ? 
https://www.ncbi.nlm.nih.gov/geo/info/seq.html

< Assembling your submission
< Metadata spreadsheet : descriptive information about the study
< Raw data files : FASTQ
< Processed data files : raw / normalized reads counts

< Uploading your submission
< Transfer files to the GEO FTP server
< Notify GEO and specify when your submission should be released 

to the public (a private access token can be created for distribution 
to journal reviewers)


